ヨビノリたくみ 東大入試問題解説 - 質問解決D.B.(データベース)

ヨビノリたくみ 東大入試問題解説

問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
投稿日:2019.07.02

<関連動画>

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る 

防衛大 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$a_1=1 \quad a_{n+1}=2^{2n-2}(a_n)^2$
n自然数、一般項を求めよ。
この動画を見る 

ガウス記号×数列!難しそうに見えるけど・・・【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x$に対し,$x$を超えない最大の整数を$\lbrack x \rbrack$で表す。数列{$a_k$}を

$a_k=2^{[\sqrt{k}]}$ $(k=1,2,3,・・・)

で定義する。正の整数$n$に対して

$b_n$=$\displaystyle \sum_{k=1}^n^{2} a_k$ を求めよ。

一橋大過去問
この動画を見る 

ただの分数の和

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{10}$+$\frac{1}{15}$+$\frac{1}{21}$+$\frac{1}{28}$+$\cdots$+$\frac{□}{□}$=?
*分母の数は階差数列
この動画を見る 

三乗根と漸化式(類)一橋:順天堂(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$\alpha=\sqrt[3]{9+4\sqrt5},\beta=\sqrt[3]{9-4\sqrt5}$
$a_n=\alpha^{2n-1}+\beta^{2n-1}$である.
$a_{n+4}-a_n$が7の倍数であることを示せ.

一橋:順天堂(医)過去問
この動画を見る 
PAGE TOP