福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。

問題文全文(内容文):
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }$を満たすとする。tを$0 \lt t \lt 1$を満たす
実数とし、線分ABを$t:(1-t)$に内分する点をPとする。
また、直線OP上に点Qをとる。

(1)$\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }}$ である。
また、実数$k$を用いて、$\overrightarrow{ OQ }=k\overrightarrow{ OP }$と表せる。したがって
$\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB }  \ldots\ldots\ldots\ldots①$
$\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }$
となる。
$\overrightarrow{ OA }$と$\overrightarrow{ OP }$が垂直となるのは、$t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ のときである。

$\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$kt$  ①$(k-kt)$  ②$(kt+1)$
③$(kt-1)$ ④$(k-kt+1)$  ⑤$(k-kt-1)$

以下、$t \neq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$とし、$\angle OCQ$が直角であるとする。

(2)$\angle OCQ$が直角であることにより、(1)のkは
$k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②$
となることがわかる。

平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。
そのうち、点Bを含む部分を$D_1$、含まない部分を$D_2$とする。また、平面
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。
そのうち、点Aを含む部分を$E_1$、含まない部分を$E_2$とする。
・$0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ならば、点Qは$\boxed{\ \ ス\ \ }$。
・$\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1$ならば、点Qは$\boxed{\ \ セ\ \ }$。

$\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$D_1$に含まれ、かつ$E_1$に含まれる
①$D_1$に含まれ、かつ$E_2$に含まれる
②$D_2$に含まれ、かつ$E_1$に含まれる
③$D_2$に含まれ、かつ$E_2$に含まれる

(3)太郎さんと花子さんは、点Pの位置と$|\overrightarrow{ OQ }|$の関係について考えている。
$t=\frac{1}{2}$のとき、①と②により、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$とわかる。

太郎:$t\neq \frac{1}{2}$のときにも、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となる場合があるかな。
花子:$|\overrightarrow{ OQ }|$を$t$を用いて表して、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$
を満たすtの値について考えればいいと思うよ。
太郎:計算が大変そうだね。
花子:直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとしたら
$|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるよ。
太郎:$\overrightarrow{ OR }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表すことができれば、
tの値が求められそうだね。

直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとすると
$\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }$
$=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }$
となる。
$t\neq \frac{1}{2}$のとき、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるtの値は$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}$である。

2021共通テスト数学過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }$を満たすとする。tを$0 \lt t \lt 1$を満たす
実数とし、線分ABを$t:(1-t)$に内分する点をPとする。
また、直線OP上に点Qをとる。

(1)$\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }}$ である。
また、実数$k$を用いて、$\overrightarrow{ OQ }=k\overrightarrow{ OP }$と表せる。したがって
$\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB }  \ldots\ldots\ldots\ldots①$
$\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }$
となる。
$\overrightarrow{ OA }$と$\overrightarrow{ OP }$が垂直となるのは、$t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ のときである。

$\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$kt$  ①$(k-kt)$  ②$(kt+1)$
③$(kt-1)$ ④$(k-kt+1)$  ⑤$(k-kt-1)$

以下、$t \neq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$とし、$\angle OCQ$が直角であるとする。

(2)$\angle OCQ$が直角であることにより、(1)のkは
$k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②$
となることがわかる。

平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。
そのうち、点Bを含む部分を$D_1$、含まない部分を$D_2$とする。また、平面
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。
そのうち、点Aを含む部分を$E_1$、含まない部分を$E_2$とする。
・$0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ならば、点Qは$\boxed{\ \ ス\ \ }$。
・$\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1$ならば、点Qは$\boxed{\ \ セ\ \ }$。

$\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$D_1$に含まれ、かつ$E_1$に含まれる
①$D_1$に含まれ、かつ$E_2$に含まれる
②$D_2$に含まれ、かつ$E_1$に含まれる
③$D_2$に含まれ、かつ$E_2$に含まれる

(3)太郎さんと花子さんは、点Pの位置と$|\overrightarrow{ OQ }|$の関係について考えている。
$t=\frac{1}{2}$のとき、①と②により、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$とわかる。

太郎:$t\neq \frac{1}{2}$のときにも、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となる場合があるかな。
花子:$|\overrightarrow{ OQ }|$を$t$を用いて表して、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$
を満たすtの値について考えればいいと思うよ。
太郎:計算が大変そうだね。
花子:直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとしたら
$|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるよ。
太郎:$\overrightarrow{ OR }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表すことができれば、
tの値が求められそうだね。

直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとすると
$\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }$
$=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }$
となる。
$t\neq \frac{1}{2}$のとき、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるtの値は$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}$である。

2021共通テスト数学過去問
投稿日:2022.01.23

<関連動画>

【高校数学】 数B-19 ベクトルの内積⑧

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=3、\vec{ a }・\vec{ b }=-3$のとき、$P=| \vec{ a } + t \vec{ b } |$を最小にする実数tの値と、 そのときの最小値を求めよう。

②不等式$| \vec{ a } ・\vec{ b }| \leqq | \vec{ a } || \vec{ b } |$を証明しよう。
この動画を見る 

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ $\overrightarrow{ AC }+\overrightarrow{ BD }=2\overrightarrow{ AD }$



この動画を見る 

【数B】ベクトル:ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\overrightarrow{a}=(4,1-5),\overrightarrow{b}=(2m,1)$が等しいとき,$l,m$の値を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題034〜東京大学2017年度文系第2問〜点の存在範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1辺の長さが1の正六角形ABCDEFが与えられている。点Pが辺AB上を、
点Qが辺CD上をそれぞれ独立に動くとき、線分PQを2:1に内分する点Rが
通りうる範囲の面積を求めよ。

2017東京大学文系過去問
この動画を見る 
PAGE TOP