大学入試問題#202 横浜国立大学 定積分 - 質問解決D.B.(データベース)

大学入試問題#202 横浜国立大学 定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
投稿日:2022.05.19

<関連動画>

【高校数学】毎日積分36日目【バウムクーヘン積分って実際どれくらい便利なの!?】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
バウムクーヘン積分について解説!まずは前回の動画をチェック!
この動画を見る 

#茨城大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{(\sqrt{ x }+1)^2}{x} dx$

出典:2023年茨城大学
この動画を見る 

福田のおもしろ数学438〜定積分の値の評価

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{2}{3} \lt \displaystyle \int_{0}^{1} e^{-x^2} dx \lt \dfrac{\pi}{4}$

を証明してください。
   
この動画を見る 

AkiyaMathさんと学ぶ積分計算 Level 2 【難】#定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{1}{2}}^{\frac{2}{3}}\displaystyle \frac{dx}{\sqrt{ x^3-3x+2 }}$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題096〜早稲田大学2020年度理工学部第3問〜水の問題

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 曲線 x=g(y)のy≧0の部分とx軸上の線分0≦x≦g(0)のなす曲線をCとし、Cをy軸のまわりに1回転してできる容器をVとする。ただし、g(y)はy≧0で定義された正の関数とする。Vに毎秒一定量vの水を注ぐとする。t秒後のV内の水位をy=h(t)とするとき、以下の問に答えよ。
(1)水位が一定の速さで上昇するとき、g(y)は定数関数であることを示せ。
(2)g(y)=$e^y$のとき、h(t)を求めよ。

2020早稲田大学理工学部過去問
この動画を見る 
PAGE TOP