【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!② - 質問解決D.B.(データベース)

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!②

問題文全文(内容文):
次の不等式を解け。
$\dfrac{2x}{x+1}\geqq x+6$
チャプター:

0:00 オープニング
0:03 問題確認
0:31 解説開始!

単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\dfrac{2x}{x+1}\geqq x+6$
投稿日:2024.02.08

<関連動画>

福田のわかった数学〜高校3年生理系013〜極限(12)無限等比級数とグラフ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+\displaystyle \frac{x}{(1+x)^2}+\displaystyle \frac{x}{(1+x)^3}+\cdots$

が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
この動画を見る 

福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
正の整数$m,n$に対して、
$A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx$
とおく。
(1)$e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1$ を証明せよ。
(2)各$m$に対して、$b_m=\lim_{n \to \infty}A(m,n)$ を求めよ。
(3)各$n$に対して、$c_n=\lim_{m \to \infty}A(m,n)$ を求めよ。

2022千葉大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系004〜極限(4)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(4)
$\displaystyle\lim_{n \to \infty}a_n=0$にもかかわらず
$\displaystyle \sum_{n=1}^{\infty}a_n$が発散する例を作れ。
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。

2023北海道大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系006〜極限(6)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(6)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log(2n^2+1)}{\log(n+2)}$ を求めよ。
この動画を見る 
PAGE TOP