6次方程式の6つの解 - 質問解決D.B.(データベース)

6次方程式の6つの解

問題文全文(内容文):
複数の解法でこれを解け.
$z^6+1=0$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
複数の解法でこれを解け.
$z^6+1=0$
投稿日:2020.06.15

<関連動画>

方程式が解をもたないとき

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xの方程式ax+3=2x-aが解をもたないときa=?

仙台育英学園高等学校
この動画を見る 

3次方程式の解の7乗の和

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^7+\beta^7+\delta^7$の値を求めよ.
この動画を見る 

福田の数学〜立教大学2024年理学部第4問〜3次方程式の実数解と整数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$m, a, b, c, d, e, f, r, s, t$を自然数とする。このとき(1)~(5)に答えよ。ただし、(2)(3)の事実は(4)(5)で用いてよい。
(1)2次方程式$2x^2+5x+m=0$の解が有理数となるような自然数$m$をすべて求めよ。ただし、$p$が素数であるとき$\sqrt{p}$が無理数であることを用いてよい。
(2)3次方程式$x^3+ax^2+bx+c=0$の実数解は負の数であることを証明せよ。ただし、方程式$x^3+ax^2+bx+c=0$が少なくとも1つ実数解をもつことは証明せずに用いてよい。
(3)3次方程式$x^3+dx^2+ex+f=0$が整数$n$を解にもつとする。このとき$n$は$f$の約数であることを示せ。
(4)3次方程式$x^3+rx^2+rx+3=0$が整数解を少なくとも1つもつような自然数$r$をすべて求めよ。
(5)3次方程式$x^3+sx^2+tx+6=0$が異なる3つの整数を解にもつような自然数の組$(s, t)$をすべて求めよ。
この動画を見る 

複素関数論⑯ コーシーの積分定理の応用 *8(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$ \displaystyle \int_{c}^{} \dfrac{1}{z-2i}\ dz$

(1)$c:$原点を中心とする単位円を求めよ.
(2)$c:-1,1,3i$でつくられる三角形の周を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-34 解と係数の関係①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2次方程式$ax^2+bx+c=0$の2つの解を$α,β$とすると、
$α+β=$①____,
$αβ=$②___,
$ax^2+bc+c=$③a(____)(____)

◎次の2次方程式の2つの解の和と積を求めよう。

①$x^2+3x-5=0$

②$-5x^2+x-2=0$

③$3x^2-9=0$

④$2x(3-x)=0$

⑤$\displaystyle \frac{4}{3}x^2-2x+\displaystyle \frac{5}{6}=0$
この動画を見る 
PAGE TOP