国際数学オリンピック 積和 - 質問解決D.B.(データベース)

国際数学オリンピック 積和

問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2\pi}{7}+\cos\dfrac{3\pi}{7}=\dfrac{1}{2}$を示せ.

国際数学オリンピック
単元: #積分とその応用#不定積分#定積分#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2\pi}{7}+\cos\dfrac{3\pi}{7}=\dfrac{1}{2}$を示せ.

国際数学オリンピック
投稿日:2021.06.26

<関連動画>

大学入試問題#543「見た目は次数だけ」 前橋工科大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt[ 4 ]{ 3 }} (x^7-3x^3)e^{-\frac{x^4}{4}}\ dx$

出典:2023年前橋工科大学 入試問題
この動画を見る 

大学入試問題#581「最後まで落ち着いて!」 東京帝国大学(1940) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3x^2-3x+2}{x^3-3x^2+x-3} dx$

出典:1940年東京帝国大学 入試問題
この動画を見る 

大学入試問題#231 電気通信大学(2012) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sin(log\ x)dx$を計算せよ。

出典:2012年電気通信大学 入試問題
この動画を見る 

大学入試問題#569「これは至高の積分」 By Picmin3daisukiさん #不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x\ \cos\ 2x}{2\sin(x+\displaystyle \frac{\pi}{4})+\cos(x-\displaystyle \frac{\pi}{4})-\cos(3x+\displaystyle \frac{\pi}{4})}\ dx$
この動画を見る 

#広島市立大学2024#不定積分_29#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{e^{2x}-4} dx$

出典:2024年広島市立大学
この動画を見る 
PAGE TOP