問題文全文(内容文):
数学$\textrm{II}$ 三角関数(16) 最大最小(6)
$y=\frac{\sin x+2}{\cos x+1} (0 \leqq x \leqq \frac{2\pi}{3})$の最大値、最小値を求めよ。
数学$\textrm{II}$ 三角関数(16) 最大最小(6)
$y=\frac{\sin x+2}{\cos x+1} (0 \leqq x \leqq \frac{2\pi}{3})$の最大値、最小値を求めよ。
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(16) 最大最小(6)
$y=\frac{\sin x+2}{\cos x+1} (0 \leqq x \leqq \frac{2\pi}{3})$の最大値、最小値を求めよ。
数学$\textrm{II}$ 三角関数(16) 最大最小(6)
$y=\frac{\sin x+2}{\cos x+1} (0 \leqq x \leqq \frac{2\pi}{3})$の最大値、最小値を求めよ。
投稿日:2021.11.15