約数の総積 - 質問解決D.B.(データベース)

約数の総積

問題文全文(内容文):
$N=p^lq^mr^n$
$p,q,r$素数
$l,m.n$自然数

$N$の正の約数すべての積を求めよ
単元: #数A#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N=p^lq^mr^n$
$p,q,r$素数
$l,m.n$自然数

$N$の正の約数すべての積を求めよ
投稿日:2019.09.09

<関連動画>

大学入試問題#456「きれいな整数問題」 一橋大学(2009) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m^3+1^3=n^3+10^3$を満たす2以上の整数$m,n$の組($m,n$)をすべて求めよ。

出典:2009年一橋大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

大学入試問題#11 北里大学(医) 2021 整数問題

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。

(2)
$x=y=1$のとき$$

(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。

出典:2021年北里大学医学部 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題095〜明治大学2020年度理工学部第1問(3)〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)A, B, C, D, Eの5人が、無作為に並び、手をつないでひとつの輪を作るという試行を考える。
(a)この試行を1回行うとき、AがBとCの2人と手をつなぐ確率は$\frac{\boxed{コ}}{\boxed{サ}}$である。
(b)この試行を3回行うとき、Aと3回手をつなぐ人が2人いる確率は$\frac{\boxed{シ}}{\boxed{スセ}}$である。
(c)この試行を3回行うとき、Aと3回手をつなぐ人が1人だけいる確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

2020明治大学理工学部過去問
この動画を見る 

解き方無限大 高校入試 図形 円

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
CD=?
*図は動画内参照
この動画を見る 
PAGE TOP