【数B】【数列】数学的帰納法1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】数学的帰納法1 ※問題文は概要欄

問題文全文(内容文):
$n$は自然数とする。数学的帰納法によって、次の等式を証明せよ。
(1) $1+2\cdot\dfrac32+\cdots+n(\dfrac32)^{n-1}=2(n-2)(\dfrac32)^n+4$
(2) $(n+1)(n+2)(n+3)\cdots(2n)=2^n\cdot1\cdot3\cdot5\cdots(2n-1)$
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。数学的帰納法によって、次の等式を証明せよ。
(1) $1+2\cdot\dfrac32+\cdots+n(\dfrac32)^{n-1}=2(n-2)(\dfrac32)^n+4$
(2) $(n+1)(n+2)(n+3)\cdots(2n)=2^n\cdot1\cdot3\cdot5\cdots(2n-1)$
投稿日:2025.04.26

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(5)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。

2021立教大学経済学部過去問
この動画を見る 

ガウス記号・漸化式・合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
この動画を見る 

【できるかな?】∑k³={n(n+1)}²/4 の導出!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^3= \{ \displaystyle \frac{1}{2}n(n+1) \}^2$を示せ。
この動画を見る 

福田の数学〜北海道大学2025文系第3問〜3項間漸化式と数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

数列$\{a_n\}$を次のように定める。

$a_1=1,a_2=3,$

$(n+1)a_{n+2}-(2n+3)a_{n+1}+(n+2)a_n=0$

$\qquad (n=1,2,3,・・・・・・)$

(1)$b_n=a_{n-1}-a_n$とおくと、

$b_{n+1}=\dfrac{n+2}{n+1}b_n \quad (n=1,2,3,・・・・・・)$

が成り立つことを示せ。

(2)数列$\{a_n\}$の一般項を求めよ。

(3)$\displaystyle \sum_{n=1}^{225}\dfrac{1}{a_n}$の値を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

【高校数学】特性方程式の漸化式~分かりやすく丁寧に~3-18【数学B】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
特性方程式の漸化式
分かりやすく丁寧に解説していきます。
この動画を見る 
PAGE TOP