福田の数学〜千葉大学2023年第5問〜垂線の足の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜千葉大学2023年第5問〜垂線の足の位置ベクトル

問題文全文(内容文):
$\Large\boxed{5}$ 点Oを原点とする座標平面において、点Aと点Bが$\overrightarrow{OA}$・$\overrightarrow{OA}$=5, $\overrightarrow{OB}$・$\overrightarrow{OB}$=2, $\overrightarrow{OA}$・$\overrightarrow{OB}$=3を満たすとする。
(1)$\overrightarrow{OB}$=$k\overrightarrow{OA}$ となるような実数$k$は存在しないことを示せ。
(2)点Bから直線OAに下ろした垂線とOAとの交点をHとする。$\overrightarrow{HB}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)実数$t$に対し、直線OA上の点Pを$\overrightarrow{OP}$=$t\overrightarrow{OA}$となるようにとる。同様に直線OB上の点Qを$\overrightarrow{OQ}$=(1-$t$)$\overrightarrow{OB}$となるようにとる。点Pを通り直線OAと直交する直線を$l_1$とし、点Qを通り直線OBと直交する直線を$l_2$とする。
$l_1$と$l_2$の交点をRとするとき、$\overrightarrow{OR}$を$\overrightarrow{OA}$,$\overrightarrow{OB}$,$t$を用いて表せ。
(4)3点O,A,Bを通る円の中心をCとするとき、$\overrightarrow{OC}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 点Oを原点とする座標平面において、点Aと点Bが$\overrightarrow{OA}$・$\overrightarrow{OA}$=5, $\overrightarrow{OB}$・$\overrightarrow{OB}$=2, $\overrightarrow{OA}$・$\overrightarrow{OB}$=3を満たすとする。
(1)$\overrightarrow{OB}$=$k\overrightarrow{OA}$ となるような実数$k$は存在しないことを示せ。
(2)点Bから直線OAに下ろした垂線とOAとの交点をHとする。$\overrightarrow{HB}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)実数$t$に対し、直線OA上の点Pを$\overrightarrow{OP}$=$t\overrightarrow{OA}$となるようにとる。同様に直線OB上の点Qを$\overrightarrow{OQ}$=(1-$t$)$\overrightarrow{OB}$となるようにとる。点Pを通り直線OAと直交する直線を$l_1$とし、点Qを通り直線OBと直交する直線を$l_2$とする。
$l_1$と$l_2$の交点をRとするとき、$\overrightarrow{OR}$を$\overrightarrow{OA}$,$\overrightarrow{OB}$,$t$を用いて表せ。
(4)3点O,A,Bを通る円の中心をCとするとき、$\overrightarrow{OC}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
投稿日:2023.07.30

<関連動画>

【わかりやすく】ベクトルの成分の成分計算(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
(1)$2\vec{ a }$
(2)$-3\vec{ b }$
(3)$\vec{ a }+\vec{ b }$
(4)$3\vec{ b }-\vec{ a }$
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(3)〜受験編・文理共通

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を原点、$A(1,1),B(1,-1)$とする。
(1) $\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$で定められる点Pを考える。$s,t$が $2s+t \leqq 2,$
$s \geqq 0,t \geqq 0$を満たすながら動くとき、点$P$の存在する範囲を図示せよ。

(2) $\overrightarrow{ OQ }=(1-u)\overrightarrow{ QA }+2u\overrightarrow{ QB }$で定められる点$Q$を考える。$u$が$0 \leqq u \leqq 1$を
満たしながら動くとき、点$P$の存在する範囲を図示せよ。
この動画を見る 

【数B】ベクトル:ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\overrightarrow{a}=(4,1-5),\overrightarrow{b}=(2m,1)$が等しいとき,$l,m$の値を求めよ.
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(1)〜正六角形の対角線ベクトルの内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。

2021立教大学理学部過去問
この動画を見る 

数学「大学入試良問集」【14−2 円と直線と平面ベクトルと。】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#立命館大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$O$を中心とする円に内接する$\triangle ABC$があり、$AB=2,\ AC=3,\ BC=\sqrt{ 7 }$とする。
点$B$を通り直線$AC$の平行な直線と円$O$との交点のうち、点$B$と異なる点を$D$、直線$AO$と直線$CD$の交点を$E$とする。

(1)内積$\overrightarrow{ AB }・\overrightarrow{ AO },\overrightarrow{ AC }・\overrightarrow{ AO }$を求めよ。

(2)$\overrightarrow{ AO }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。

(3)$\overrightarrow{ AD }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。

(4)$CE:DE$を求めよ。
この動画を見る 
PAGE TOP