近畿大 茨城大 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

近畿大 茨城大 Mathematics Japanese university entrance exam

問題文全文(内容文):
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲

茨城大学過去問題
$x^3=i$を解け
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲

茨城大学過去問題
$x^3=i$を解け
投稿日:2018.09.04

<関連動画>

神奈川大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1-i}{\sqrt{ 3 }-i})^{12}$

出典:神奈川大学 過去問
この動画を見る 

複素数 慈恵医大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.

(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.

2004慈恵医大過去問
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

大阪市立大 複素数・整数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を自然数とする.
$\omega=a-b\sqrt5 i$
$z=c-d\sqrt5 i$
$-\omega z=11+8\sqrt5 i$

$(a,b,c,d)$をすべて求めよ.

2021大阪市立大過去問
この動画を見る 

【高校数学】 数Ⅱ-23 複素数①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数の実部と虚部を書こう。
①$5-2i$

②$-7+i$

③$\displaystyle \frac{-2-3i}{5}$

④$-7$

⑤$2i$

◎次の等式を満たす実数x,yの値を求めよう。

⑥$(x+2)+(x-y)i=5-i$

⑦$(x+2y)+(x-6)i=0$
この動画を見る 
PAGE TOP