福田の数学〜早稲田大学2025教育学部第1問(2)〜三角形の外心と垂心と点の回転 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025教育学部第1問(2)〜三角形の外心と垂心と点の回転

問題文全文(内容文):

$\boxed{1}$

(2)座標平面上の$3$点

$A(1,0),B(0,-1),C(-1,1)$を

頂点とする三角形$ABC$を考える。

三角形$ABC$をその外心を中心として反時計回りに

$\dfrac{\pi}{3}$だけ回転することで得られる三角形の

垂心の座標を求めよ。

なお、三角形の$3$頂点から対辺または

その延長に下ろした$3$本の垂線は一点で交わり、

その交点を三角形の垂心という。

$2025$年早稲田大学教育学部第1問過去問題
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)座標平面上の$3$点

$A(1,0),B(0,-1),C(-1,1)$を

頂点とする三角形$ABC$を考える。

三角形$ABC$をその外心を中心として反時計回りに

$\dfrac{\pi}{3}$だけ回転することで得られる三角形の

垂心の座標を求めよ。

なお、三角形の$3$頂点から対辺または

その延長に下ろした$3$本の垂線は一点で交わり、

その交点を三角形の垂心という。

$2025$年早稲田大学教育学部第1問過去問題
投稿日:2025.07.18

<関連動画>

【数ⅢC】複素数平面の基本⑧円の方程式を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)$\vert z+2i\vert=3$
(2)$\vert z+3-2i\vert =1$
(3)$\vert z-i\vert=1$
この動画を見る 

大学入試問題#594「やばいのは見た目だけ」 東京帝国大学(1926) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ i }$を求めよ。
$(i^2=-1)$

出典:1926年東京帝国大学医学部 入試問題
この動画を見る 

岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$  n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
この動画を見る 

基本問題

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$ 点$M_1(0,0)$を中心に$点(1,0)$を、時計の針の回転と逆の向きを正として、$\theta$だけ回転させた点を$P_1$とする。次に$線分M_1P_1$の$中点M_2$とし、この$M_2$を中心に$点P_1$を$\theta$だけ回転させた点を$P_2$とする。同様に自然数$n$に対して、$線分M_nP_n$の$中点M_{n+1}$を中心に$点P_n$を$\theta$だけ回転させた点を$P_{n+1}$とする。$P_n$の座標を$(x_n,y_n)$とする。
$(1)\theta=\frac{\pi}{4}$のとき、$x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }},$$ y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。
$(2)\theta=\frac{\pi}{3}$のとき、$\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ },$ $\lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }}$である。


2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP