数学「大学入試良問集」【5−5 点の移動と確率】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【5−5 点の移動と確率】を宇宙一わかりやすく

問題文全文(内容文):
座標平面上を点$P$が次の規則に従って動くとする。
1回サイコロを振るごとに
 ・1または2の目が出ると、$x$軸の正の方向に1進む。
 ・3または4の目が出ると、$y$軸の正の方向に1進む。
 ・5または6の目が出ると、直線$y=x$に関して対称な点に動く。
  ただし、直線$y=x$上にある場合はその位置にとどまる。
点$P$は最初に原点にあるとする。

(1)
$A$回サイコロを振った後の点$P$が直線$y=x$上にある確率を求めよ。

(2)
$m$を$0 \leqq m \leqq n$を満たす整数とする。
$n$回サイコロを振った後の点$P$が直線$x+y=m$上にある確率を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上を点$P$が次の規則に従って動くとする。
1回サイコロを振るごとに
 ・1または2の目が出ると、$x$軸の正の方向に1進む。
 ・3または4の目が出ると、$y$軸の正の方向に1進む。
 ・5または6の目が出ると、直線$y=x$に関して対称な点に動く。
  ただし、直線$y=x$上にある場合はその位置にとどまる。
点$P$は最初に原点にあるとする。

(1)
$A$回サイコロを振った後の点$P$が直線$y=x$上にある確率を求めよ。

(2)
$m$を$0 \leqq m \leqq n$を満たす整数とする。
$n$回サイコロを振った後の点$P$が直線$x+y=m$上にある確率を求めよ。
投稿日:2021.04.07

<関連動画>

【高校数学】  数A-8  順列② ・ 続・基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①5種類の数字1,2,3,4,5を並べて3桁の整数をつくるとなん通りできる?

②5種類の数字1,2,3,4,5を重複を許して並べて3桁の整数をつくるとなん通りできる?

③4人が1回じゃんけんするとき、手の出し方は何通りある?
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m)   \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(5)〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)表の出る確率が$\frac{2}{3}$、裏の出る確率が$\frac{1}{3}$のコインを投げて、表が出たら+1点を加え、裏が出たら-1点を加える。というルールのゲームを行う。
0点から初めて5回コインを投げ終わった時、得点が3点以上となる確率は$\boxed{\ \ オ\ \ }$である。

2023立教大学理学部過去問
この動画を見る 

山口大(医)場合の数(東大類題)高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03山口大学過去問題
m個の玉(区別無し)を袋A,B,Cに入れる。
A,B,Cに入れる個数をそれぞれx,y,z個
(1)m=18   $x>y>z \geqq 0$ 何通りか
(2)m=6n   $x>y>z \geqq 0$ 何通りか、nで表せ
この動画を見る 
PAGE TOP