【高校受験対策/数学】図形40 - 質問解決D.B.(データベース)

【高校受験対策/数学】図形40

問題文全文(内容文):
高校受験対策・図形40

図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。

①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。

②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形40

図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。

①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。

②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
投稿日:2021.10.03

<関連動画>

【テスト対策・中3】3章-7

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$(x-3)^2=12$の2つの解を、$m、n$とするとき、
$\dfrac{(m+n)^2}{mn}$の値を求めなさい。

②2次方程式$x^2-16x+3a=0$の解がともに奇数となるような
正の整数$a$の値をすべて求めなさい。
この動画を見る 

これできた?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 64% }$は何%?
この動画を見る 

【数学】中高一貫校問題集2幾何130:円:接弦定理

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図において、ADは円の接線で、AB=BD、CA=CBである。このとき、∠ADBの大きさを求めなさい。
この動画を見る 

二次関数:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学第二高等学校

定義域がともに$-1 \leqq x \leqq 3$である$2$つの関数
$y =\displaystyle \frac{4}{3}x^2, y = ax + b (a \lt 0)$
値域が一致するような $a, b$の値を求めなさい。
この動画を見る 

【高校受験対策/数学】死守-86

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#比例・反比例#空間図形#2次関数#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守86 @1:57

①$3×(-8)$を計算しなさい。

➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。

③$-8x^3÷4x^2×(-x)$を計算しなさい。

④$\sqrt{50}+\sqrt{2}$を計算しなさい。

⑤六角形の内角の和を求めなさい。

⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。

⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。

⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。

⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。

この動画を見る 
PAGE TOP