問題文全文(内容文):
高校受験対策・図形40
図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。
①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。
②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
高校受験対策・図形40
図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。
①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。
②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形40
図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。
①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。
②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
高校受験対策・図形40
図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。
①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。
②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
投稿日:2021.10.03