【数Ⅲ-170】積分と体積①(基本編) - 質問解決D.B.(データベース)

【数Ⅲ-170】積分と体積①(基本編)

問題文全文(内容文):
数Ⅲ(積分と体積①・基本編)

ポイント
曲線$y=f(x)$と$x$軸と$x=a$、$x=b(a<b)$で囲まれた部分を
$x$軸のまわりに1回転してできる回転体の体積$V$は①。

②$y=e^x$、$x$軸、$x=1$、$x=2$で囲まれた部分を、$x$軸のまわりに1回転してできる立体の体積
③$x=y^2-1$、$y$軸で囲まれた部分を、$y$軸のまわりに1回転してできる立体の体積
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積①・基本編)

ポイント
曲線$y=f(x)$と$x$軸と$x=a$、$x=b(a<b)$で囲まれた部分を
$x$軸のまわりに1回転してできる回転体の体積$V$は①。

②$y=e^x$、$x$軸、$x=1$、$x=2$で囲まれた部分を、$x$軸のまわりに1回転してできる立体の体積
③$x=y^2-1$、$y$軸で囲まれた部分を、$y$軸のまわりに1回転してできる立体の体積
投稿日:2020.09.03

<関連動画>

#岩手大学2024#定積分_34

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} (4\pi^2-t^2)\cos t dt$

出典:2024年岩手大学
この動画を見る 

【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る 

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その1(受験編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内の2点A(1,0,0),B(0,1,1)を結ぶ線分ABをz軸のまわりに
1回転してできる曲面と2平面z=0,z=1とで囲まれた立体の体積
を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題009〜九州大学2015年度理系数学第2問〜関数の増減と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)関数$\ y=\frac{1}{x(\log x)^2}$は$x \gt 1$において単調に減少することを示せ。

(2)不定積分$\ \int\frac{1}{x(\log x)^2}dx$ を求めよ。

(3)nを3以上の整数とするとき、不等式
$\sum_{k=3}^n\frac{1}{k(\log k)^2} \lt \frac{1}{\log 2}$
が成り立つことを示せ。

2015九州大学理系過去問
この動画を見る 

【数Ⅲ】区分求積法【グラフの面積とはなにか。和が積分になる驚きの仕組み】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \left(\dfrac{k^2}{n^3}+\dfrac{3k}{n^2}+\dfrac{1}{n} \right)$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=1}^n \dfrac{1}{2k+n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=n+1}^{3n}\dfrac{1}{\sqrt{kn}}$を求めよ.
この動画を見る 
PAGE TOP