【高校数学】数Ⅰ-4 展開①(基本編) - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-4 展開①(基本編)

問題文全文(内容文):
◎展開しよう。
①$(x-5y)^2$
②$(1-2x)^2$
③$(3x+y)(3x-y)$
④$(-a+b)(-a-b)$
⑤$(7x-2y)(2y+7x)$
⑥$(x+7)(x-2)$
⑦$(x-5y)(x+y)$
⑧$(x-4)(3x+5)$
⑨$(3a+2b)(a-3b)$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎展開しよう。
①$(x-5y)^2$
②$(1-2x)^2$
③$(3x+y)(3x-y)$
④$(-a+b)(-a-b)$
⑤$(7x-2y)(2y+7x)$
⑥$(x+7)(x-2)$
⑦$(x-5y)(x+y)$
⑧$(x-4)(3x+5)$
⑨$(3a+2b)(a-3b)$
投稿日:2014.03.08

<関連動画>

【三角比の基礎はこれだけ!】三角比の基礎を全て解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)
指導講師: 3rd School
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第3問〜散布図と箱ひげ図

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ある高校の生徒30人に対し、50m走のタイムを2回計測した。
左図(※動画参照)は1回目の計測結果を横軸に2回目の計測結果
を縦軸に取った散布図である。
(1)次の$(\textrm{A})$から$(\textrm{F})$のうち、1回目の計測結果の箱ひげ図
として適当なものは$\boxed{\ \ ネ\ \ }$であり、2回目の計測結果の箱ひげ図として
適当なものは$\boxed{\ \ ノ\ \ }$である。
(2)次の$(\textrm{G})$から$(\textrm{L})$のうち、1回目と2回目の計測結果の合計の
箱ひげ図として適切なものは$\boxed{\ \ ハ\ \ }$である。
(3)遅れてやってきた31人目の生徒の50m走のタイムを2回計測した
結果、1回目は20.0(秒)、2回目は10.0(秒)であった。各生徒の2回の\\
計測結果の合計を考え、最初の30人の生徒の平均値を$\bar{ x_{31} }$,中央値を
$m_{31}$とする。$\bar{ x_{30} }=17.0$であることに注意すると、
$\bar{ x_{31} }-\bar{ x_{30} }=\boxed{\ \ ヒ\ \ }$である。一方、
$m_{31}-m_{30}=\boxed{\ \ フ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

【短時間でマスター!!】3元1次方程式を使った2次関数の決定解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
グラフが3点(1,3)(2,5)(3,9)を通るような2次関数は?
この動画を見る 

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
この動画を見る 

3乗根を外すだけ

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3乗根を外せ.
$\sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
この動画を見る 
PAGE TOP