マイナス乗とは?2分の1乗とは?基本から丁寧に解説 - 質問解決D.B.(データベース)

マイナス乗とは?2分の1乗とは?基本から丁寧に解説

問題文全文(内容文):
$(\frac{2}{3})^{-\frac{3}{2}}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\frac{2}{3})^{-\frac{3}{2}}$
投稿日:2023.06.05

<関連動画>

福田の数学〜京都大学2023年文系第1問〜3乗根の有理化

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問1 nを自然数とする。1個のさいころをn回投げるとき、出た目の積が5で割り切れる確率を求めよ。
問2 次の式の分母を有理化し、分母に3乗根の記号が含まれない式として表せ。
$\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$

2023京都大学文系過去問
この動画を見る 

ドラゴン桜 東大模試数学

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+b^3-3ab=2020$を満たす自然数$a,b$は存在するか.

東大模試過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 平面上の長さ3の線分AB上に、AP=t\ (0 \lt t \lt 3)を満たす点Pをとる。\hspace{72pt}\\
中心をOとする半径1の円Oが、線分ABと点Pで接しているとする。\alpha=\angle OAB,\ \beta=\angle OBA\\
とおく。\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)をtで表すと、\\
\tan\alpha=\boxed{\ \ あ\ \ },\ \tan\beta=\boxed{\ \ い\ \ },\ \tan(\alpha+\beta)=\boxed{\ \ う\ \ }\ である。\\
0 \lt \alpha+\beta \lt \frac{\pi}{2}であるようなtの範囲は\boxed{\ \ え\ \ }\ である。\\
tは\ \boxed{\ \ え\ \ }\ の範囲にあるとする。点A,\ Bから円Oに引いた接線の接点のうち、\\
PでないものをそれぞれQ,\ Rとすると、\angle QAB+\angle RBA \lt \piである。\\
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、\\
その交点をCとすると、円Oは三角形ABCの内接円である。\\
このとき、線分CQの長さをtで表すと\ \boxed{\ \ お\ \ }\ である。\\
また、tが\ \boxed{\ \ え\ \ }\ の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は\boxed{\ \ か\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
アイ \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]

\end{array}
この動画を見る 
PAGE TOP