数学の概要を一気につかむ音楽~全国入試問題解法 #shorts #数学 #高校入試 #sound - 質問解決D.B.(データベース)

数学の概要を一気につかむ音楽~全国入試問題解法 #shorts #数学 #高校入試 #sound

問題文全文(内容文):
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.

慶応志木高校過去問
単元: #数学(中学生)#中2数学#中3数学#2次方程式#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.

慶応志木高校過去問
投稿日:2023.01.22

<関連動画>

【3分で理解!5分で発展的学習!】二次方程式:山口県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
差が1である大小2つの正の数がある.
これらの積が3であるとき,2つの数のうち,大きい方の数を求めなさい.

山口県高校過去問
この動画を見る 

yがxの関数であるとは? 広島県

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 数学を数楽に
問題文全文(内容文):
yがxの関数であるものをすべて選べ
①年齢の差がx歳である2人の年齢の和はy歳
②底辺がxcmの平行四辺形の面積はy㎠
⓷500gの砂糖をxg使ったときの残りの量はyg
④1本100円のボールペンをx本買ったときの代金はy円

広島県
この動画を見る 

中2数学「1次関数の式の求め方①(グラフからの読み取り)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数の式の求め方①~ (グラフからの読み取り )

例題次の図の直線の式を求めなさい。
この動画を見る 

気付けば気持ちいい!!連立方程式 慶應義塾

アイキャッチ画像
単元: #連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 6 \\
6xy = 5
\end{array}
\right.
\end{eqnarray}

慶應義塾高等学校
この動画を見る 

【高校受験対策】数学-死守19

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例#確率#文章題#文章題その他#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$8-(-13)$を計算しなさい.

②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.

③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.

④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.

⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.

⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.

⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.

⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.

$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)

⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.

ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$

⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい

①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
この動画を見る 
PAGE TOP