岡山大 ガウス記号 - 質問解決D.B.(データベース)

岡山大 ガウス記号

問題文全文(内容文):
$a_n=\left[\dfrac{2^n}{3}\right]$
$a_n$を$4$で割った余りを求めよ.

1993岡山大過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\left[\dfrac{2^n}{3}\right]$
$a_n$を$4$で割った余りを求めよ.

1993岡山大過去問
投稿日:2020.09.04

<関連動画>

数学「大学入試良問集」【13−15 格子点の解法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を$0$以上の整数とするとき、$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2} \leqq k$をみたす$0$以上の整数$x,y$の組$(x,y)$の個数を$a_k$とする。
$a_k$を$k$の式で表せ。

(2)
$n$を$0$以上の整数とするとき
$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2}+z \leqq n$
をみたす$0$以上の整数$x,y,z$の組$(x,y,z)$の個数を$b_n$とする。
$b_n$を$n$の式で表せ。
この動画を見る 

ド・モアブルの定理を数学的帰納法で証明するよ。

アイキャッチ画像
単元: #複素数平面#数列#数学的帰納法#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を数学的帰納法で証明していきます.
この動画を見る 

佐賀大 バーゼル問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
以下を証明せよ
$\displaystyle \frac{1}{1^2}+\displaystyle \frac{1}{3^2}+\displaystyle \frac{1}{5^2}+…+\displaystyle \frac{1}{(2n-1)^2} \lt \displaystyle \frac{3}{2}$

出典:1995年佐賀大学 過去問
この動画を見る 

三項間漸化式 兵庫県立大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.

兵庫県立大過去問
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 
PAGE TOP