【中学数学】平方根:√5の整数部分をa、小数部分をbとするとき、a²-b²の値を求めましょう! - 質問解決D.B.(データベース)

【中学数学】平方根:√5の整数部分をa、小数部分をbとするとき、a²-b²の値を求めましょう!

問題文全文(内容文):
$\sqrt5$の整数部分をa、小数部分をbとするとき、$a²-b²$の値を求めましょう
単元: #数学(中学生)#中3数学#平方根
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt5$の整数部分をa、小数部分をbとするとき、$a²-b²$の値を求めましょう
投稿日:2020.06.06

<関連動画>

平方根の計算 城北高校 2022年入試問題解説52問目

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{2023 \times 2021 - 4044 +2}$

2022城北高等学校
この動画を見る 

【高校受験対策/数学】死守74

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守74

①$6-17$を計算しなさい。

②$6÷(-\frac{2}{3})$を計算しなさい。

③$2x+3y-(\frac{x+5y}{2})$を計算しなさい。

④$(\sqrt{3}+1)(\sqrt{3}-3)$を計算しなさい。

⑤ 下の図のような、平行四辺形$ABCD$がある。このとき$\angle x$の大きさを求めなさい。

⑥右の図のように、1辺の長さが$4cm$の立方体にちょうど入る大きさの球がある。
この球の体積を求めなさい。

⑦$am$のリボンから$bm$切り取ると、残りのリボンの長さは$2m$より短い。
この数量の関係を不等式で表しなさい。

⑧ある小学校で、工場の見学に行くために電車を利用することになった。
通常は児童15人と先生2人が支払う運賃の合計が9100円になる。
しかし、児童が10人以上いるとき児童の運賃のみが4割引きになる。
このため、児童15人と先生2人の運賃との合計は6100円になった。
このとき、割引きされた後の児童1人分の運賃を求めなさい。
この動画を見る 

【中学数学】数学検定3級2次:問題6

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
この動画を見る 

平方数  九州学院(熊本)

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$20(3n+6)$がある整数の平方になる最小の自然数nを求めよ。

九州学院高等学校
この動画を見る 

【高校受験対策/数学】死守-97

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97

①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。

④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$

⑤二次方程式$3x^2+7x+1=0$を解きなさい。

⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。

⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。

⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る 
PAGE TOP