【高校受験対策】数学-死守36 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守36

問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
投稿日:2019.02.13

<関連動画>

【中学数学】数学用語チェック絵本 act2 vol.1 式の計算

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
中2 連立方程式の単元の用語をチェック!
この動画を見る 

みんなの説明も聞きたいです...

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「くくる」についての分かりやすい説明
この動画を見る 

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 

中学入試 計算 中大附属中学

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師: 数学を数楽に
問題文全文(内容文):
$(37037 \times 84 - 30030 \times 81 -7007 \times 81) \times 9$
中央大学附属中学校
この動画を見る 

【中学数学】多項式の加法減法の問題演習~計算ミスしない方法~ 1-3【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\, (3x+2y)+(x+7y)
$
$\displaystyle
(2)\, (5a-3b)+(-a+6b)
$
$\displaystyle
(3)\, (3x^2+y)+(7x^2+3)
$
$\displaystyle
(4)\, (4x+y)-(20x+5y)
$
$\displaystyle
(5)\, (s+3t)-(-s+2t)
$
$\displaystyle
(6)\, (r+x^2)-(x^2-4r)
$
$\displaystyle
(7)\, (6a-3b)-(6a-2b)
$
$\displaystyle
(8)\, (x^2-x-3)-(6x^2+3x-1)
$
$\displaystyle
(9)\, (6x-6y-3)+(5x-4y-8)
$
$\displaystyle
(10)\, (11a-7b-c)-(a-4b+c)
$
この動画を見る 
PAGE TOP