中央大 三項間漸化式 - 質問解決D.B.(データベース)

中央大 三項間漸化式

問題文全文(内容文):
2023中央大学過去問題
$a_n=(2+\sqrt{3})^n+(2-\sqrt{3})^n$
①$a_{n+2}+a_n=4a_{n+1}$を示せ
②$a_{n+1}+a_n$は3の倍数であることを示せ
③$a_{2023}$を3で割った余り
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023中央大学過去問題
$a_n=(2+\sqrt{3})^n+(2-\sqrt{3})^n$
①$a_{n+2}+a_n=4a_{n+1}$を示せ
②$a_{n+1}+a_n$は3の倍数であることを示せ
③$a_{2023}$を3で割った余り
投稿日:2023.06.23

<関連動画>

【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
$S=1+2×2+3×2^3+\cdots+n\cdot2^{n-1}$を求めよ。
この動画を見る 

福田のおもしろ数学378〜ある漸化式で定められる数列の最初の2025項が正で2026番目が初めて負になることが可能かどうかの検証

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{0}>0, c>0, a_{n+1}=\frac{a_{n}+c}{1-a_{n}c}$で定まる数列${a_{n}}$に対し、$a_{0}, a_{1}, \cdots ,a_{2024}$がすべて正であり、$a_{2025}<0$となることは可能か。
この動画を見る 

大学入試問題#589「一度は解いておきたい良問」 奈良女子大学(2004) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1\times a_2\times・・・\times a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$のとき
$\displaystyle \sum_{n=1}^\infty a_n$を求めよ

出典:2004年奈良女子大学 入試問題
この動画を見る 

【高校数学】 数B-63 等差数列とその和⑥

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1から200までの整数のうち,次のような数の和を求めよう.

①4の倍数

②4で割り切れない数

③30から100までの自然数のうち,
4または6の倍数の数の和を求めよう.
この動画を見る 

福田のおもしろ数学484〜漸化式で定まる数列の連続する正の項の最大個数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

実数列$a_1,a_2,a_3,\cdots $が

$a_n=a_{n-1}-a_{n+2} (n=1,2,3,4\cdots)$

を満たしている。

この数列の連続する要素のうちで、

すべてが正となるものの最大個数はいくつか?
    
この動画を見る 
PAGE TOP