大学入試問題#668「解き方は色々あると思います」 埼玉医科大学(2007)定積分 - 質問解決D.B.(データベース)

大学入試問題#668「解き方は色々あると思います」  埼玉医科大学(2007)定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{dx}{1+\sqrt{ 3 }\tan\ x}$

出典:2007年埼玉医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{dx}{1+\sqrt{ 3 }\tan\ x}$

出典:2007年埼玉医科大学 入試問題
投稿日:2023.12.05

<関連動画>

2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$

出典:2019年東京大学入試問題
この動画を見る 

大学入試問題#82 神戸大学(2012) 複雑な置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x-\cos\ x}{1+\cos\ x}\ dx$

出典:2012年神戸大学 入試問題
この動画を見る 

【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
この動画を見る 

福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

大学入試問題#68 京都大学(2012) 部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }}\displaystyle \frac{log\sqrt{ 1+x^2 }}{x^2}\ dx$

出典:2012年京都大学 入試問題
この動画を見る 
PAGE TOP