大学入試問題#679「基本的な極限問題」 愛知医科大学(2020) 極限 - 質問解決D.B.(データベース)

大学入試問題#679「基本的な極限問題」 愛知医科大学(2020) 極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{2^x-1}{\sin\ 2x}$

出典:2020年愛知医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{2^x-1}{\sin\ 2x}$

出典:2020年愛知医科大学 入試問題
投稿日:2023.12.19

<関連動画>

福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)正の数の組$(x,\ y)$が
$\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}$
を満たすとき$z=xy$は$(x,\ y)=(a,\ b)$で最小値をとる。ここで、
$\log_{10}a=\frac{\boxed{ヤ}}{\boxed{ユ}},\ \log_{10}b=\frac{\boxed{ヨ}}{\boxed{ワ}}$
である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜一橋大学2025文系第3問〜定積分で表された方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

等式

$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$

が成り立つ実数$a$がちょうど$4$つ存在するような

実数$k$の範囲を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、

$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$

を満たす点$w$の軌跡を$C$とする。

次の問いに答えよ。

(1)$C$はどのような図形か。複素数平面上に図示せよ。

(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。

(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の

表す領域の共通部分の面積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

大学入試問題#871「初手が大事な基本問題」 #日本工業大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{2x^2-x+2}{x^3+x} dx$

出典:2023年日本工業大学
この動画を見る 

重積分⑦-1【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
変数変換(極座標)
$x=rcosθ$ $y=rsinθ$
$∬_D f(x,y)dxdy=∬_D f(rcosθ,rsinθ)rdrdθ$

(1)$∬_D \sqrt{x^2+y^2}dxdy$
$D : 4 \leqq x^2+y^2 \leqq 9$

(2)$∬_D sin\sqrt{x^2+y^2}dxdy$
$D : x^2+y^2 \leqq x^2$
この動画を見る 
PAGE TOP