数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
投稿日:2021.08.01

<関連動画>

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

【高校数学】新潟大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分90日目~47都道府県制覇への道~【㉝新潟】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
この動画を見る 

【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る 

大学入試問題#403「教科書の例題にありそう」 東京電機大学2009 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x|3x-2| dx$

出典:2009年東京電機大学 入試問題
この動画を見る 

13愛知県教員採用試験(数学:5番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
この動画を見る 
PAGE TOP