福田の数学〜慶應義塾大学2024総合政策学部第5問〜線形計画法 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024総合政策学部第5問〜線形計画法

問題文全文(内容文):
領域 $D$ $ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leq 4 \\
(\sqrt{2}x^2 - 2y) (x-2y+2) \leq 0
\end{array}
\right.
\end{eqnarray} $
を点 $(x,y)$ が動くとき $x-2y$ の最大値、最小値を求めよ。
$ax+y$ が $(\frac{6}{5}, \frac{8}{5})$ で最大となる $a$ の範囲は?
そのときの $ax+y$ のとりうる範囲は?
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
領域 $D$ $ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leq 4 \\
(\sqrt{2}x^2 - 2y) (x-2y+2) \leq 0
\end{array}
\right.
\end{eqnarray} $
を点 $(x,y)$ が動くとき $x-2y$ の最大値、最小値を求めよ。
$ax+y$ が $(\frac{6}{5}, \frac{8}{5})$ で最大となる $a$ の範囲は?
そのときの $ax+y$ のとりうる範囲は?
投稿日:2024.10.18

<関連動画>

難問です!三角関数と整数の融合問題!解けますか?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。

一橋大過去問
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)$ は
$\displaystyle f(x)=x^2 \int^{2}_{0} f'(t) dt +Ax, \quad f(1)=1$
を満たしている。ただし、$A$ は定数である。このとき、$f(x)$ が最大になる $x$ を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

重積分④-1【積分順序の変更】(高専数学 微積II,数学検定1級解析)

単元: #数Ⅱ#積分とその応用#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$

(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
この動画を見る 
PAGE TOP