問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
投稿日:2019.04.04