京都大 放物線と線分の長さ Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

京都大 放物線と線分の長さ Mathematics Japanese university entrance exam

問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き

出典:1981年京都大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き

出典:1981年京都大学 過去問
投稿日:2019.04.04

<関連動画>

大学入試問題#241 早稲田大学(2014) #指数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=(27^x+\displaystyle \frac{1}{27^x})-5(9^x+\displaystyle \frac{1}{9^x})$
$-5(3^x+\displaystyle \frac{1}{3^x})+1$の最小値と、そのときの$x$の値を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

座標平面上の放物線$C_1:y=x^2$と

円$C_2:x^2+(y-b)^2=a^2$を考える。

ただし、$a,b$は正の実数とする。

(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための

必要十分条件は

$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。

(2)$C_1$と$C_2$が異なる$2$点で接するための

必要十分条件は

$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。

(ただし、$C_1$と$C_2$が共有点$P$で接するとは、

$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)

また、このとき$2$つの接点のうち$x$座標が

正のものを$A(\alpha,\beta)$とすると、

$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。

$A$における共通の接線の傾きが$\sqrt3$であるとき、

直線$y=\beta$の下側で、

$C_1$と$C_2$に囲まれた部分の面積は

$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。

$2025$年上智大学TEAP利用型文系過去問題
この動画を見る 

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)$
を満たす$\theta$の範囲は
$0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$63^{13}$ VS $33^{16}$
この動画を見る 
PAGE TOP