福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の曲線\hspace{210pt}\\
C:y=x^3-x\\
を考える。\\
(1)座標平面上の全ての点Pが次の条件(\textrm{i})を満たすことを示せ。\\
(\textrm{i})点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。\\
(2)次の条件(\textrm{ii})を満たす点Pのとりうる範囲を座標平面上に図示せよ。\\
(\textrm{ii})点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと\\
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。
\end{eqnarray}

2022東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の曲線\hspace{210pt}\\
C:y=x^3-x\\
を考える。\\
(1)座標平面上の全ての点Pが次の条件(\textrm{i})を満たすことを示せ。\\
(\textrm{i})点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。\\
(2)次の条件(\textrm{ii})を満たす点Pのとりうる範囲を座標平面上に図示せよ。\\
(\textrm{ii})点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと\\
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。
\end{eqnarray}

2022東京大学理系過去問
投稿日:2022.02.28

<関連動画>

大きさ比べ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
大小比較せよ.
$20^{21}+21^{21}$ VS $22^{21}$
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&3^a=7^b=441\\
&&\frac{ab}{a+b} = ?

\end{eqnarray}
$
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?$ e\fallingdotseq 2,71$

$6^{\sqrt7}$ VS $7^{\sqrt6}$
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらの方が大きいか?
$2^{186}$ VS $3^{114}$
この動画を見る 
PAGE TOP