姪(高1)からの質問 - 質問解決D.B.(データベース)

姪(高1)からの質問

問題文全文(内容文):
$\frac{x+y}{3}=\frac{y+z}{6}=\frac{z+x}{7} \neq 0$
$\frac{x^3+y^3+z^3}{(x-y)(y-z)(z-x)}$
x,y,z正
$\frac{yz}{x}$=$\frac{zx}{4y}$=$\frac{xy}{9z}$
$\frac{x+y+z}{\sqrt{x^2+y^2+z^2}}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{x+y}{3}=\frac{y+z}{6}=\frac{z+x}{7} \neq 0$
$\frac{x^3+y^3+z^3}{(x-y)(y-z)(z-x)}$
x,y,z正
$\frac{yz}{x}$=$\frac{zx}{4y}$=$\frac{xy}{9z}$
$\frac{x+y+z}{\sqrt{x^2+y^2+z^2}}$
投稿日:2018.05.07

<関連動画>

【マコちゃんねるがていねいに解説】2次関数 4STEP数Ⅰ 142 二次関数の対称移動(2)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
この動画を見る 

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x(y^3-z^3)+y(z^3-x^3)+z(x^3-y^3),因数分解せよ.$
この動画を見る 

福田のわかった数学〜高校1年生012〜2次関数の最大最小(5)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 2次関数の最大最小(5)\\
x^2+4y^2=4のとき\ \ \ \ \ \ \ \ \ \ \ \ \ \\\
(1)x+2y^2\ \ \ \ \ \ \ \ \ \ (2)xy\ \ \ \ \ \ \ \\\
の最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅰ】集合と命題:実数全体を全体集合とし、その部分集合A, B, CをA={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} (kは定数)とする。

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数全体を全体集合とし、その部分集合A, B, CをA={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} (kは定数)とする。
(1)次の集合を求めよう。
(ア)Bバー
(イ)A∪Bバー
(ウ)A∩Bバー。
(2)A⊂Cとなるkの値の範囲を求めよう。
この動画を見る 

学習院大 二次不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^2+2(a-5)x+a^2-11a+26,
f(x)aを満たす実数xが存在するようなaの範囲を求めよ.$
この動画を見る 
PAGE TOP