福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積

問題文全文(内容文):
$t,\ p$を実数とし、$t \gt 0$とする。xy平面において、原点Oを中心とし点A(1,t)
を通る円を$C_1$とする。また、点Aにおける$C_1$の接線をlとする。直線$x=p$
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。
(1)直線$l$の方程式をtを用いて表せ。
(2)pをtを用いて表せ。
(3)$C_2$とx軸の接点をMとし、$C_2$とy軸の交点をNとする。tが正の実数全体を動くとき、
三角形OMNの面積の最小値を求めよ。

2022筑波大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$t,\ p$を実数とし、$t \gt 0$とする。xy平面において、原点Oを中心とし点A(1,t)
を通る円を$C_1$とする。また、点Aにおける$C_1$の接線をlとする。直線$x=p$
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。
(1)直線$l$の方程式をtを用いて表せ。
(2)pをtを用いて表せ。
(3)$C_2$とx軸の接点をMとし、$C_2$とy軸の交点をNとする。tが正の実数全体を動くとき、
三角形OMNの面積の最小値を求めよ。

2022筑波大学理系過去問
投稿日:2022.05.25

<関連動画>

福田の数学〜立教大学2024年経済学部第2問〜接線が作る三角形の面積の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p,q$を正の定数とする。座標平面上に放物線$C:y=-x^2$がある。$C$上の点$\mathrm{P}(p,-p^2)$における$C$の接線を$l$,$\mathrm{Q}(q,-q^2)$における$C$の接線を$m$とする。また$l$と$m$の交点を$\mathrm{R}$とする。
(1) $l,m$の方程式をそれぞれ求めよ。
(2) $\mathrm{R}$の座標を$p,q$を用いて表せ。
(3) $\mathrm{Q}$と$l$の距離$d$を$p,q$を用いて表せ。
(4) 三角形$\mathrm{PQR}$の面積$S$を$p,q$を用いて表せ。
(5) $l$と$m$が直交するとき、$q$を$p$を用いて表せ。
(6) $l$と$m$が直交するとき、(4)の$S$の最小値を求めよ。また、そのときの$p$の値を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。

(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。

2019上智大過去問
この動画を見る 

大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$

出典:2003年横浜国立大学 入試問題
この動画を見る 

100の位は何? 東京学芸大学附属

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$5^{25}$の百の位の数は?

東京学芸大学附属高校
この動画を見る 

ゆる言語学者に数学を教えるよ。その3 複素数の掛け算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
複素数の掛け算に関して解説していきます.
この動画を見る 
PAGE TOP