【数A】【整数の性質】ユークリッドの互除法の利用 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【整数の性質】ユークリッドの互除法の利用 ※問題文は概要欄

問題文全文(内容文):
(1)3で割ると1余り,7で割ると3余るような自然数のうち,3桁で最大のものと最小のものを求めよ。
(2)8で割ると4余り,13で割ると9余るような自然数のうち,4桁で最大のものと最小のものを求めよ。

次の等式を満たす自然数x,yの組をすべて求めよ。
(1)7x+2y=41
(2)3x+4y=36
(3)4x+5y=100

所持金660円で1個50円の商品Aと1個80円の商品Bを買う。所持金をちょうど使い切るとき,商品Aと商品Bをそれぞれ何個買えばよいか。ただし,消費税は考えないものとする。
チャプター:

0:00 1解説
6:04 2解説
10:51 3解説
14:04 エンディング

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)3で割ると1余り,7で割ると3余るような自然数のうち,3桁で最大のものと最小のものを求めよ。
(2)8で割ると4余り,13で割ると9余るような自然数のうち,4桁で最大のものと最小のものを求めよ。

次の等式を満たす自然数x,yの組をすべて求めよ。
(1)7x+2y=41
(2)3x+4y=36
(3)4x+5y=100

所持金660円で1個50円の商品Aと1個80円の商品Bを買う。所持金をちょうど使い切るとき,商品Aと商品Bをそれぞれ何個買えばよいか。ただし,消費税は考えないものとする。
投稿日:2025.01.25

<関連動画>

福田の数学〜北里大学2022年医学部第1問(3)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3) 等式 $30x-23y=1$を満たす正の整数の組(x, y) のうち、$x+y$ が最小となる
ものは[キ]である。
$A={n|n$ は 600 以下の正の整数であり、30の倍数である}
$B={n|n$ は 600 以下の正の整数であり、 n を 23 で割ると4余る}
とおく。このとき、 AUBに属する正の整数の総和は[ク]である。
また、m を正の整数とし、 $∨m^2 +120$ は整数であるとすると、mのとり得る値は[ヶ],[コ],[サ],[シ]である。

2022北里大学医学部過去問
この動画を見る 

決め手は角度。大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△CDQ=?
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

【数A】整数の性質:結局何で割った余り?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 整数の性質】
3で割ると2余り、5で割ると3余り、7で割ると2余る整数を一般化せよ。

これを合同式を用いて解きます。
この動画を見る 

三角定規、比の扱い 明治学院

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
明治学院高等学校
この動画を見る 

京大 信州大 整数 2次方程式 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
①$n$と$n^2+2$がともに素数となるような自然数$n$を求めよ。

信州大学過去問題
②$x^2+(2a-1)x+a^2-3a-4=0$が少なくとも1つの正の解をもつ条件。
この動画を見る 
PAGE TOP