指数・対数の基本問題 - 質問解決D.B.(データベース)

指数・対数の基本問題

問題文全文(内容文):
$5^x=9^y=2025$である.
$\dfrac{xy}{x+y}$の値を求めよ.
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^x=9^y=2025$である.
$\dfrac{xy}{x+y}$の値を求めよ.
投稿日:2021.10.20

<関連動画>

見掛け倒しの方程式 ちょっと気をつけてね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2)^{\log_2(x^2+x-6)^2}=-2x+4$
この動画を見る 

19神奈川県教員採用試験(数学:10番 数列・対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$${a_n}$:等比数列,$a_1=2,r=3$
$10^4 < a_n <10^7$
をみたすnの個数を求めよ。
$log_{10}2=0.301$ , $log_{10}3=0.4771$
この動画を見る 

広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題

(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3  PとP+2がともに素数のときP+1は6の倍数であることを示せ。


不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る 

【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\log_{ 10 } 2$=0.3010,$\log_{ 10 } 3$=0.4771とする。
$2^{50}$は何桁の整数か?
この動画を見る 

福田の数学〜京都大学2022年理系第1問〜対数の値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$5.4 \lt \log_42022 \lt 5.5$であることを示せ。ただし、$0.301 \lt \log_{10}2 \lt 0.3011$で
あることは用いてよい。

2022京都大学理系過去問
この動画を見る 
PAGE TOP