【数Ⅲ】【微分とその応用】関数の最大と最小9 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数の最大と最小9 ※問題文は概要欄

問題文全文(内容文):
定点A(a,b)を通る傾きが負の直線と、x軸およびy軸とが作る三角形の面積Sの最小値を求めよ。ただし、a>0,b>0とする。
チャプター:

0:00 オープニング
0:03 問題概要
0:23 直線の方程式の置き方
2:25 三角形の面積Sの表し方
2:35 立式の目的
3:30 微分開始
5:38 導関数の正負の判定方法
7:20 最小値の計算

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
定点A(a,b)を通る傾きが負の直線と、x軸およびy軸とが作る三角形の面積Sの最小値を求めよ。ただし、a>0,b>0とする。
投稿日:2025.03.01

<関連動画>

山形(医他)4次関数と接線 積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
この動画を見る 

【数Ⅲ】グラフを描く【チェックするべきポイントを押さえる】

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
グラフを描くことに関して解説していきます.
この動画を見る 

福田の数学〜京都大学2023年理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ Oを原点とするxyz空間において、点Pと点Qは次の3つの条件(a),(b),(c)を満たしている。
(a):点Pはx軸上にある。
(b):点Qはyz平面上にある。
(c):線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a),(b),(c)を満たしながらくまなく動くとき、線分PQが通過してできる立体の体積を求めよ。

2023京都大学理系過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$f(x)=(\log x)^2+2\log x+3$として、座標平面上の曲線$y=f(x)$を$C$とする。
ただし、$\log x$は$x$の自然対数を表し、$e$を自然対数の底とする。
$(\textrm{a})$関数$f(x)$は$x=\frac{\boxed{ソ}}{e}$のとき最小値$\boxed{タ}$をとる。
$(\textrm{b})$曲線Cの変曲点の座標は$(\boxed{チ},\ \boxed{ツ})$である。
$(\textrm{c})$直線$y=\boxed{ツ}$と曲線Cで囲まれた図形の面積は
$\frac{\boxed{テ}}{e^2}$である。
$(\textrm{d})a$を実数とする。曲線$C$の接線で、点$(0,\ a)$を通るものがちょうど1本あるとき、
aの値は$\boxed{ト}$である。
$(\textrm{e})b$を実数とする。曲線Cの2本の接線が点$(0,\ b)$で垂直に交わるとき、
bの値は$\frac{\boxed{ナ}}{\boxed{ニ}}$である。

2022明治大学理工学部過去問
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 
PAGE TOP