#岩手大学(2013) #極限 #Shorts - 質問解決D.B.(データベース)

#岩手大学(2013) #極限 #Shorts

問題文全文(内容文):
limx03x+42sin3x

出典:2013年岩手大学
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
limx03x+42sin3x

出典:2013年岩手大学
投稿日:2024.05.20

<関連動画>

【数Ⅲ】極限:3乗根を含む極限、3乗根の有理化

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよう。lim[x→0]{∛(1+x)-∛(1-x)}/x
この動画を見る 

福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は区間x0において連続な増加関数でf(0)=1を満たすとする。
ただしf(x)が区間x0における増加関数であるとは、区間内の任意の実数x1,x2に対し
x1<x2ならばf(x1)<f(x2)が成り立つ時をいう。以下、nは正の整数とする。
(1)limn021nf(x)2xdx= を示せ。
(2)区間y>2 において関数Fn(y)Fn(y)=2+1nyf(x)2xdxと定めるとき、

limyFn(y)=を示せ。また2+1nより大きい実数an

021nf(x)2xdx+2+1nanf(x)2xdx=0

を満たすものがただ1つ存在することを示せ。
(3)(2)のanについて、不等式an<4がすべてのnに対して成り立つことを示せ。

2022名古屋大学理系過去問
この動画を見る 

福田のおもしろ数学030〜調和級数は発散しない?〜驚くべき事実がここに

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
調和級数

1+12+13+14+15

について解説します
この動画を見る 

【数Ⅲ】極限:三角関数の合成の利用

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
limxπ4sinxcosxxπ4
この動画を見る 

極限の基本問題 立教大

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
limx0sin(1cosx)x2
この動画を見る 
PAGE TOP preload imagepreload image