【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²) - 質問解決D.B.(データベース)

【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)

問題文全文(内容文):
次の式を展開しよう。
$(a-b)(a+b)(a^2+ab+b^2)(a^2-ab+b^2)$
チャプター:

0:00 オープニング
0:05 問題文
0:13 3乗の因数分解を利用
1:44 名言

単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しよう。
$(a-b)(a+b)(a^2+ab+b^2)(a^2-ab+b^2)$
投稿日:2021.05.11

<関連動画>

【高校受験対策/数学】死守74

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守74

①$6-17$を計算しなさい。

②$6÷(-\frac{2}{3})$を計算しなさい。

③$2x+3y-(\frac{x+5y}{2})$を計算しなさい。

④$(\sqrt{3}+1)(\sqrt{3}-3)$を計算しなさい。

⑤ 下の図のような、平行四辺形$ABCD$がある。このとき$\angle x$の大きさを求めなさい。

⑥右の図のように、1辺の長さが$4cm$の立方体にちょうど入る大きさの球がある。
この球の体積を求めなさい。

⑦$am$のリボンから$bm$切り取ると、残りのリボンの長さは$2m$より短い。
この数量の関係を不等式で表しなさい。

⑧ある小学校で、工場の見学に行くために電車を利用することになった。
通常は児童15人と先生2人が支払う運賃の合計が9100円になる。
しかし、児童が10人以上いるとき児童の運賃のみが4割引きになる。
このため、児童15人と先生2人の運賃との合計は6100円になった。
このとき、割引きされた後の児童1人分の運賃を求めなさい。
この動画を見る 

慣れれば暗算!!

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$16 \times 25 \times 25 =$
この動画を見る 

中2数学「式による説明④(カレンダー問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明④(カレンダー問題)

(1)枠Aのように、 縦に並んだ3つの数の和は、 真ん中の数の3倍にな ることを説明しなさい。
この動画を見る 

【簡潔に予習・復習!】多項式(前編):教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
多項式に関して解説していきます.
この動画を見る 

【高校受験対策/数学】死守83

アイキャッチ画像
単元: #数学(中学生)#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守83

①$-1-5$を計算しなさい。

②$(-3)^2+4×(-2)$を計算しなさい。

③$10xy^2÷ (-5y)×3x$を計算しなさい。

④$2x-y-\frac{5x+y}{3}$を計算しなさい。

⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。

⑥次の方程式を解きなさい。
$x^2=9x$

⑦$l=2\pi r$を$r$について解きなさい。

⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。

⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。

➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。

ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
この動画を見る 
PAGE TOP