【中学数学】中学数学:数学検定3級2次:問題5 - 質問解決D.B.(データベース)

【中学数学】中学数学:数学検定3級2次:問題5

問題文全文(内容文):
問題5.右の図のように、平行四辺形ABCDの対角線AC上にAE=EF=FCとなるように、点E、Fを点Aに近いほうからこの
順にとり、点BとE、点DとFをそれぞれ線分で結びます。このとき、BE=DFとなることは、下のように証明できます。
[証明]
△ABEと△CDFにおいて
仮定より、AE=CF …①
[ア]から、AB=CD …②
AB∥DCより、[イ]から、∠BAE=∠DCF …③
①、②、③より、[ウ]から、△ABE≡△CDF
合同な図形の対応する辺は等しいから、BE=DF

次の問いに答えなさい。
(10) [ア]、[イ]にあてはまる言葉を、下のあ~おの中からそれぞれ1つ選びなさい。
  あ 平行四辺形の向かい合う辺は等しい
  い 平行四辺形の向かい合う角は等しい
  う 平行四辺形の対角線はそれぞれの中点で交わる
  え 平行線の同位角は等しい
  お 平行線の錯角は等しい
(11) [ウ]にあてはまる合同条件を、下のか~この中から1つ選びなさい。
  か 3組の辺がそれぞれ等しい
  き 2組の辺とその間の角がそれぞれ等しい。
  く 1組の辺とその両端の角がそれぞれ等しい。
  け 直角三角形の斜辺と1つの鋭角がそれぞれ等しい。
  こ 直角三角形の斜辺と他の1辺がそれぞれ等しい。
(12) △ABEの面積が12㎝²であるとき、△ACDの面積は何㎝²ですか。
単位をつけて答えなさい。
チャプター:

0:00 問題説明
1:05 (10)の解説
2:56 (11)の解説
3:44 (12)の解説
5:39 まとめ

単元: #数学(中学生)#中2数学#数学検定・数学甲子園・数学オリンピック等#平行と合同#三角形と四角形#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題5.右の図のように、平行四辺形ABCDの対角線AC上にAE=EF=FCとなるように、点E、Fを点Aに近いほうからこの
順にとり、点BとE、点DとFをそれぞれ線分で結びます。このとき、BE=DFとなることは、下のように証明できます。
[証明]
△ABEと△CDFにおいて
仮定より、AE=CF …①
[ア]から、AB=CD …②
AB∥DCより、[イ]から、∠BAE=∠DCF …③
①、②、③より、[ウ]から、△ABE≡△CDF
合同な図形の対応する辺は等しいから、BE=DF

次の問いに答えなさい。
(10) [ア]、[イ]にあてはまる言葉を、下のあ~おの中からそれぞれ1つ選びなさい。
  あ 平行四辺形の向かい合う辺は等しい
  い 平行四辺形の向かい合う角は等しい
  う 平行四辺形の対角線はそれぞれの中点で交わる
  え 平行線の同位角は等しい
  お 平行線の錯角は等しい
(11) [ウ]にあてはまる合同条件を、下のか~この中から1つ選びなさい。
  か 3組の辺がそれぞれ等しい
  き 2組の辺とその間の角がそれぞれ等しい。
  く 1組の辺とその両端の角がそれぞれ等しい。
  け 直角三角形の斜辺と1つの鋭角がそれぞれ等しい。
  こ 直角三角形の斜辺と他の1辺がそれぞれ等しい。
(12) △ABEの面積が12㎝²であるとき、△ACDの面積は何㎝²ですか。
単位をつけて答えなさい。
投稿日:2022.10.01

<関連動画>

難問!?まさかの答え。

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

【数検3級】数学検定3級対策問題2~5

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#式の計算(展開、因数分解)#2次方程式#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学検定3級対策問題2~5の解説動画です。
この動画を見る 

長方形の面積5等分

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
面積5等分
a:b=?
*図は動画内参照
この動画を見る 

複雑にみえる連立方程式 慶應義塾

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
51x + 49y = 1 \\
49x + 51y = 2
\end{array}
\right.
\end{eqnarray}
$
慶應義塾高等学校
この動画を見る 

中2数学「連立方程式の文章題②(2けたの整数問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題②~ (2けたの整数問題)

例題
2けたの正の整数があり、十の位の数と一の位の数の和は11です。 また、十の位と一の位を入れかえてできる2けたの整数は、 もとの数より45小さくなります。
もとの2けたの整数を求めなさい。
この動画を見る 
PAGE TOP