高専数学 微積II #5 4次近似式 - 質問解決D.B.(データベース)

高専数学 微積II #5 4次近似式

問題文全文(内容文):
$f(x)=\dfrac{1}{\sqrt{1-x}}$の$x=0$における
4次近似式の等式を求めよ.
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\dfrac{1}{\sqrt{1-x}}$の$x=0$における
4次近似式の等式を求めよ.
投稿日:2021.07.13

<関連動画>

高専数学 微積II #2(3)(4) 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x=0$における2次近似式を求め等式で表せ.
(1)$\cos 2x$
(2)$\log (1+2x)$
この動画を見る 

【数Ⅲ-129】速度と加速度②(平面上の点の運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度➁・平面上の点の運動編)

①座標平面上を運動する点$P(x,y)$の時刻$t$における座標が$x=e^t\cos t$、$y=e^t\sin t$であるとき、
点$P$の時刻$t$における速さ$\vec{v}$と加速度$\vec{a}$の大きさをそれぞれ求めよ
この動画を見る 

高専数学 微積II n次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における$n$次近似式の等式は
$f(x)=\dfrac{f(a)}{O!}+\dfrac{f'(a)}{1!}(x-a)+・・・・・・$
$+\dfrac{f^{(n)}(a)}{n!} (x-a)^n+\xi_n (x)$
つまり
$f(x)=\displaystyle \sum_{k=0}^{n}\dfrac{f^{(k)}(a)}{k!} (x-a)^k+\xi (x)$
ただし
$\displaystyle \lim_{x\to a} \dfrac{\xi_n(x)}{(x-a)^n}=0$

これを解け.
この動画を見る 

対数の近似値の求め方

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{246}$と$3^{144}$どちらが大きいか求めよ
この動画を見る 

高専数学 微積II #1(1)(2) 1次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における一次近似式は
$f(a)+f`(a)(x-a)$
次の点における一次近似式を求めよ.

(1)$e^{2x}\cos x \ (x=0)$
(2)$\dfrac{1}{x} \ (x=1)$

この動画を見る 
PAGE TOP