福田の数学〜青山学院大学2023年理工学部第1問〜空間ベクトルとと四面体の体積 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2023年理工学部第1問〜空間ベクトルとと四面体の体積

問題文全文(内容文):
$\Large\boxed{1}$ 座標空間の3点A(0,1,2), B(3,-2,2), C(-1,4,1)が定める平面を$\alpha$とする。
原点Oから平面$\alpha$に垂線を下ろし、$\alpha$との交点をHとする。
(1)$\overrightarrow{AB}$・$\overrightarrow{AC}$=$\boxed{\ \ アイウ\ \ }$
(2)$\triangle$ABCの面積は$\frac{\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$である。
(3)$\overrightarrow{AH}$=$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$$\overrightarrow{AB}$+$\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$$\overrightarrow{AC}$, $\overrightarrow{OH}$=$\frac{\boxed{\ \ シ\ \ }\sqrt{\boxed{\ \ ス\ \ }}}{\boxed{\ \ セ\ \ }}$
(4)四面体OHBCの体積は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 座標空間の3点A(0,1,2), B(3,-2,2), C(-1,4,1)が定める平面を$\alpha$とする。
原点Oから平面$\alpha$に垂線を下ろし、$\alpha$との交点をHとする。
(1)$\overrightarrow{AB}$・$\overrightarrow{AC}$=$\boxed{\ \ アイウ\ \ }$
(2)$\triangle$ABCの面積は$\frac{\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$である。
(3)$\overrightarrow{AH}$=$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$$\overrightarrow{AB}$+$\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$$\overrightarrow{AC}$, $\overrightarrow{OH}$=$\frac{\boxed{\ \ シ\ \ }\sqrt{\boxed{\ \ ス\ \ }}}{\boxed{\ \ セ\ \ }}$
(4)四面体OHBCの体積は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
投稿日:2023.09.02

<関連動画>

練習問題22 教採問題集 空間ベクトルによる平面

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
点$A(-1,1,2)$を通り,
$\alpha:2x-y+3z-2=0$に直交する平面$\beta$の
方程式を求めよ.
この動画を見る 

【数C】【空間ベクトル】△ABCについて,cosAの値と面積Sを求めよ(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
この動画を見る 

【数B】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよう。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第1問〜正四面体に関する図形問題

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$1$ 辺の長さが $2$ の正四面体 $\mathrm{ABCD}$ において、辺 $\mathrm{AD}$ 上の点 $\mathrm{E}$、辺 $\mathrm{DC}$ 上の点 $\mathrm{F}$、辺 $\mathrm{CA}$ 上の点 $\mathrm{G}$、辺 $\mathrm{BC}$ 上の点 $\mathrm{H}$ を$\mathrm{AE}$$=\mathrm{DF}$$=\mathrm{CG}$$=2t,$ $\mathrm{BH}=t$ となるようにとる。ただし、 $0 \leqq t \leqq 1$ とする。
$(1)$ $\triangle \mathrm{EFG}$ の面積は $\sqrt{\fbox{ア}}(\fbox{イ}t^2$$+\fbox{ウ}t$$+\fbox{エ})$ である。
$(2)$ $\mathrm{B}$ から平面 $\mathrm{ACD}$ に垂線を下ろし、平面 $\mathrm{ACD}$ との交点を $\mathrm{P}$ とするとき、 $\mathrm{BP} = \frac{\fbox{オ}}{\fbox{カ}}\sqrt{\fbox{キ}}$ である。
$(3)$ $\mathrm{H}$ から平面 $\mathrm{EFG}$ に垂線を下ろし、平面 $\mathrm{EFG}$ との交点を $\mathrm{Q}$ とするとき、 $\mathrm{HQ} = \frac{\fbox{ク}}{\fbox{ケ}}\sqrt{\fbox{コ}}(t+\fbox{サ})$ である。
$(4)$ 四面体 $\mathrm{HEFG}$ の体積が最小になるのは
$t=\fbox{シ} + \frac{\fbox{ス}}{\fbox{セ}}\sqrt{\fbox{ソ}}$
この動画を見る 

数検準1級2次過去問【2020年12月】6番:ベクトル

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#空間ベクトル#空間ベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
▢ABCDが正方形の四角錐O-ABCDがある。
OAを1:1に内分する点をP
OBを2:1に内分する点をQ
OCを3:1に内分する点をR
3点P,Q,Rを通る平面とODの交点をSとする。
$\vec{ OS }$を$\vec{ OA }$,$\vec{ OB }$,$\vec{ OC }$で表せ
この動画を見る 
PAGE TOP