北海道大学 数1 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

北海道大学 数1 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
北海道大学過去問題
$\frac{1}{x}$の小数部分が$\frac{x}{2}$に等しくなるような正の数xをすべて求めよ。
ただし、正の数aの小数部分とは、aを超えない最大の整数nとの差$a-n$のことをいう。
単元: #数Ⅰ#大学入試過去問(数学)#数と式#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
$\frac{1}{x}$の小数部分が$\frac{x}{2}$に等しくなるような正の数xをすべて求めよ。
ただし、正の数aの小数部分とは、aを超えない最大の整数nとの差$a-n$のことをいう。
投稿日:2018.05.17

<関連動画>

【高校数学】背理法例題演習~基礎的な2題~ 1-19.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $\sqrt{6}$が無理数であることを用いて、$1+\sqrt{6}$が、無理数であることを証明せよ

(2) 三角形の内角のうち、少なくとも1つは$60°$以上であることを証明せよ
この動画を見る 

福田の数学〜上智大学2022年理工学部第2問〜三角比と通過領域の体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
tを実数とする。次の条件(★)を満たす$\triangle ABC$を考える。
(★)$AC=t,\ BC=1$を満たし、$\angle BAC$の2等分線と辺BCの交点をDとおくと、
$\cos\angle DAC=\frac{\sqrt3}{3}$である。
(1)$\cos\angle DAC=\frac{\boxed{カ}}{\boxed{キ}}$である。
(2)tの取りうる範囲を$t_1\lt t \lt t_2$とするとき、$t_1=\boxed{あ},t_2=\boxed{い}$である。

$\boxed{あ},\ \boxed{い}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{3}\ \ \ (\textrm{c})\frac{1}{2}\ \ \ (\textrm{d})\frac{\sqrt3}{3}\ \ \ (\textrm{e})\frac{2}{3}$
$ (\textrm{f})1\ \ \ (\textrm{g})\frac{2\sqrt3}{2}\ \ \ (\textrm{h})\sqrt3\ \ \ (\textrm{i})2\ \ \ (\textrm{j})3$

(3)辺ABの長さをtの式で表すと$AB=\frac{\boxed{ク}}{\boxed{ケ}}t+$
$\sqrt{1+\frac{\boxed{コ}}{\boxed{サ}}t^2}$である。

(4)$\triangle ABC$の面積は$t=\frac{\sqrt{\boxed{シ}}}{\boxed{ス}}$
で最大値$\frac{\sqrt{\boxed{セ}}}{\boxed{ソ}}$をとる。

(5)$t_1,t_2$を(2)で定めた値とする。
$t_1 \lt t \lt t_2$の範囲で、xyz-座標空間内の平面z=t上に、条件(★)を満たす
$\triangle ABC$が、$B(0,0,t),C(0,1,t)$を満たし、Aのx座標が正であるように
おかれている。まgた、$B_1(0,0,t_1),C_1(0,1,t_1),B_2(0,0,t_2),C_2(0,1,t_2)$と
おく。
$\triangle ABC$を$t_1 \lt t \lt t_2$の範囲で動かしたときに通過してできる図形に線分$B_1C_1$、
線分$B_2C_2$を付け加えた立体の体積は$\frac{\sqrt{\boxed{タ}}}{\boxed{チ}}$である。
この動画を見る 

【高校数学】数Ⅰ-20 1次不等式④(応用編)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?

②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
この動画を見る 

大阪大 無理数と整数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha$を$x^2-2x-1=0$の解とするとき,
$(a+5\alpha)(b+5c\alpha)=1$を満たす整数の組$(a,b,c)$をすべて求めよ.
ただし,$\sqrt2$が無理数であることは証明不要

2009大阪大過去問
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
アイ \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]

\end{array}
この動画を見る 
PAGE TOP