連立3元3次方程式 - 質問解決D.B.(データベース)

連立3元3次方程式

問題文全文(内容文):
$x\lt y\lt z$とする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^2+y^2+z^2=38 \\\
x^3+y^3+z^3=144
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\lt y\lt z$とする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^2+y^2+z^2=38 \\\
x^3+y^3+z^3=144
\end{array}
\right.
\end{eqnarray}$
投稿日:2022.07.12

<関連動画>

福井大 2次方程式と複素平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ

出典:2000年福井大学 過去問
この動画を見る 

【数Ⅰ】2次関数:次の座標やグラフを①x軸に関して、②y軸に関して、③原点に関して、それぞれ対称移動したときの座標や式を求めよう。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の座標やグラフを①x軸に関して、②y軸に関して、③原点に関して、それぞれ対称移動したときの座標や式を求めよう。
(1)$ (4,-3)$
(2)$y=-\dfrac{1}{3x^2}-2x+1$
この動画を見る 

解き方いろいろ 面積比 筑波大附属 訂正はコメント欄に

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$△ADE×12=△ABC$
$x=?$
筑波大学付属高等学校
この動画を見る 

平均点 城北

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,C,Dの得点の平均は80点
A,Bの平均点は78点
A,C,Dの平均点は81点
Aの得点は?

城北高等学校
この動画を見る 

ほぼ自明な証明ほど難しい?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{2}+\sqrt{3}$
が無理数であることを証明せよ。
この動画を見る 
PAGE TOP