大学入試問題#17 埼玉大学(2021) 解と係数の関係 - 質問解決D.B.(データベース)

大学入試問題#17 埼玉大学(2021) 解と係数の関係

問題文全文(内容文):
$x^2-kx+\displaystyle \frac{5}{2}=0$の実数解$\alpha,\beta,(\alpha \lt \beta)$は
$(\alpha-3)^2+(\beta-3)^2=8$をみたす。
$k,\alpha,\beta$の値を求めよ。

出典:2020年埼玉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
$x^2-kx+\displaystyle \frac{5}{2}=0$の実数解$\alpha,\beta,(\alpha \lt \beta)$は
$(\alpha-3)^2+(\beta-3)^2=8$をみたす。
$k,\alpha,\beta$の値を求めよ。

出典:2020年埼玉大学 入試問題
投稿日:2021.09.25

<関連動画>

福田の数学〜立教大学2025経済学部第1問(1)〜指数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$2^{1-3x} \geqq \left(\dfrac{1}{\sqrt2}\right)^x$を満たす

実数$x$の値の範囲は$\boxed{ア}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

数学「大学入試良問集」【12−4 共通接線と面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$

以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
この動画を見る 

福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$p$と$m$を実数とし、

関数$f(x)=x^3+3px^2+3mx$は

$x=\alpha$で極大値をとり、

$x=\beta$で極小値をとるとする。

(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。

(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を

満たしながら動くとき、

曲線$y=f(x)$の変曲点の軌跡を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

福田の数学〜一橋大学2024年文系第1問〜シグマが2024になるような2変数の値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $\displaystyle\sum_{k=1}^mk(n-2k)$=2024 を満たす正の整数の組($m$, $n$)を求めよ。
この動画を見る 

因数分解 大学入試だけど中学生の知識で解ける!福島大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4+x^2+1+2xy-y^2$

福島大学
この動画を見る 
PAGE TOP