大学入試問題#615「ラッキー問題?」 東京工業大学(1976) #積分方程式 - 質問解決D.B.(データベース)

大学入試問題#615「ラッキー問題?」 東京工業大学(1976) #積分方程式

問題文全文(内容文):
$\displaystyle \int_{0}^{x} f(t)dt=e^x-ae^{2x}\displaystyle \int_{0}^{1} f(t)e^{-t}dt$のとき
関数$f(x),$定数$a$を求めよ。

出典:1976年東京工業大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} f(t)dt=e^x-ae^{2x}\displaystyle \int_{0}^{1} f(t)e^{-t}dt$のとき
関数$f(x),$定数$a$を求めよ。

出典:1976年東京工業大学 入試問題
投稿日:2023.08.13

<関連動画>

【高校数学】毎日積分24日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^πx^2cos^2xdx$
これを解け.
この動画を見る 

視聴者の僚太さんの積分「編集に5時間・・・・」

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2\ log\ 2}^{3\ log\ 2} \sqrt{ e^x-4 } \ dx$
この動画を見る 

#高専数学_11#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
この動画を見る 

【高校数学】毎日積分55日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{-\frac{π}{3}}^{\frac{π}{6}}\displaystyle \lvert\frac{4sinx}{\sqrt{3}cosx-sinx}\displaystyle \rvert dx$
これを解け.
この動画を見る 

【高校数学】毎日積分15日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{3}\frac{dx}{sinx+\sqrt{3}cosx}$
これを解け.
この動画を見る 
PAGE TOP