問題文全文(内容文):
すべての実数で定義された連続関数$f(x)$に対し、
$\dfrac{f(x)}{x} \ (x\neq 0)$
が常に正であるとき、
$f(0)$の値を求めて下さい。
すべての実数で定義された連続関数$f(x)$に対し、
$\dfrac{f(x)}{x} \ (x\neq 0)$
が常に正であるとき、
$f(0)$の値を求めて下さい。
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
すべての実数で定義された連続関数$f(x)$に対し、
$\dfrac{f(x)}{x} \ (x\neq 0)$
が常に正であるとき、
$f(0)$の値を求めて下さい。
すべての実数で定義された連続関数$f(x)$に対し、
$\dfrac{f(x)}{x} \ (x\neq 0)$
が常に正であるとき、
$f(0)$の値を求めて下さい。
投稿日:2025.06.07





