福田の一夜漬け数学〜絶対不等式(1)〜受験編 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜絶対不等式(1)〜受験編

問題文全文(内容文):
実数aに対し、不等式 $y \leqq 2ax-a^2+2a+2$の表す領域をD(a)とする。
(1)$-1 \leqq a \leqq 2$を満たす全てのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。

(2)$-1 \leqq a \leqq 2$を満たすいずれかのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数aに対し、不等式 $y \leqq 2ax-a^2+2a+2$の表す領域をD(a)とする。
(1)$-1 \leqq a \leqq 2$を満たす全てのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。

(2)$-1 \leqq a \leqq 2$を満たすいずれかのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
投稿日:2018.04.22

<関連動画>

見掛け倒しの「どっちがでかい?」

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[5]{5!}$ vs $\sqrt[6]{6!}$
どちらが大きいか?
この動画を見る 

#62.5 #数検1級1次 #有理化 #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ

出典:数検1級1次
この動画を見る 

【高校数学】数Ⅰ-5 展開②(練習編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+4y)(3x-2y)$
②$(-3x-y)(y-3x)$
③$(3m-a)(2m-5a)$
④$(3a-\displaystyle \frac{1}{2}b)^2$
⑤$(a+2b)^2(a-2b)^2$
⑥$(x-2)(x+2)(x^2+4)$
⑦$(x+y)^2(x-y)^2(x^2+y^2)^2$
⑧$(2a+b)(4a^2+b^2)(2a-b)$
この動画を見る 

Prove π is larger than 3.05 ~Tokyo University Entrance Examination~

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\pi$が3.05より大きいことを証明せよ

出典:東京大学 入試問題
この動画を見る 

2023共通テスト 正弦定理で解く!?こんな解き方もあり?

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=5
$sin\angle ACB = $
*図は動画内参照

2023共通テスト数ⅠA
この動画を見る 
PAGE TOP