一次不等式(不等式・絶対値のある方程式・不等式) - 質問解決D.B.(データベース)

一次不等式(不等式・絶対値のある方程式・不等式)

【ホーン・フィールドがていねいに解説】数と式 4S数学問題集数Ⅰ 83,84,85 1次不等式の利用2

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題83
1個800円の品物がある。入会金500円を払って会員になると、この品物を6%引きで買うことができる。入会して品物を買う場合、何個以上買えば入会しないで買うより安くなるか。ただし、消費税は考えないものとする。

問題84
13%と5%の食塩水を混ぜて400gの食塩水を作った。その濃度が10%以上であるとき、混ぜた5%の食塩水は何g以下か。

問題85
ある高等学校の1年全員が長いすに座っていくとき、1脚に6人ずつ座っていくと15人が座れなくなる。また、1脚に7人ずつ座っていくと、使わない長いすが3脚できる。長いすの数は何脚以上何脚以下か。
この動画を見る 

【ホーン・フィールドがていねいに解説】数と式 4S数学問題集数Ⅰ 80,81,82 1次不等式の利用

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):

次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

(4STEP問題82)
aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
この動画を見る 

以上未満の覚え方~とんとんと先生の教え方の違い~

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数の性質その他#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
以上未満の覚え方
この動画を見る 

ざ・一次不定方程式 合同式で楽々

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数x,yについて、97x+83y=23を満たす整数解x,yの一般解を求めよ
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(1)〜絶対値の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)方程式4||x|-1|=x+2の解を全て求めるとx=\boxed{\ \ あ\ \ } となる。
\end{eqnarray}
この動画を見る 

【高校数学】絶対値の1次不等式まとめ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)実数x,yについて、「|x-y| \leqq x+y」であることの必要十分条件は\\
「x \geqq 0かつy \geqq 0 」であることを示せ。\\
(2)次の不等式で定まるxy平面上の領域を図示せよ。\\
|1+y-2x^2-y^2| \leqq 1-y-y^2
\end{eqnarray}
この動画を見る 

指数不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2-1)^{\frac{x}{x-4}}\gt (3-\sqrt8)^{\frac{1}{2x(x-4)}}$
この動画を見る 

何でもない不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$2^x+2^{\vert x\vert}\geqq 2\sqrt2$
この動画を見る 

【数Ⅰ】不等式に含まれる最大の整数【端の状況をよく考えよう】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 不等式4x+2 \lt 3aを満たすxの最大の整数値が5であるとき,定数aの値の範囲を求めよ.$
この動画を見る 

【数Ⅰ】数と式:分母にxを含む不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解きなさい。
1/(x-2) ≦ 2/(x+3)
この動画を見る 

福田のわかった数学〜高校1年生第7回〜絶対値(第3回)

アイキャッチ画像
単元: #数Ⅰ#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 絶対値(第3回)\\
次の不等式を解け。\\
|x+2|+|2x-1| \lt 4
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校1年生第6回〜絶対値(第2回)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 絶対値(第2回)\\
次の方程式、不等式を解け。\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\
(1)|x+2|=-2x (2)|x+2| \lt -2x
\end{eqnarray}
この動画を見る 

福田の1日1題わかった数学〜高校1年生第5回〜絶対値(第1回)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 絶対値(第1回)\\
次の方程式、不等式を解け。\\
(1)|x+2|=3 (2)|x+2| \lt 3 (3)|x+2| \gt 3
\end{eqnarray}
この動画を見る 

福田の1日1題わかった数学〜高校1年生第4回〜方程式、不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 方程式・不等式\\
次の方程式、不等式を解け。\\
(1)ax=b  (2)ax \gt b
\end{eqnarray}
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large第1問}\\
[1] a,bを定数とするとき、xについての不等式\\
|ax-b-7| \lt 3 \cdots①\\
を考える。\\
(1)a=-3,b=-2とする。①を満たす整数全体の集合をPとする。\\
この集合Pを、要素を書き並べて表すと\\
P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}\\
となる。ただし、\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }の解答の順序は問わない。\\
\\
(2)a=\frac{1}{\sqrt2}とする。\\
(\textrm{i})b=1のとき、①を満たす整数は全部で\boxed{\ \ オ\ \ }個である。\\
(\textrm{ii})①を満たす整数が全部で(\boxed{\ \ オ\ \ }+1)個であるような正の整数b\\
のうち、最小のものは\boxed{\ \ カ\ \ }である。\\
\\
[2]平面上に2点A,Bがあり、AB=8である。直線AB上にない点Pをとり、\\
\triangle ABPをつくり、その外接円の半径をRとする。\\
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点P\\
をいろいろな位置に取った。\\
図1は、点Pをいろいろな位置にとったときの\triangleの外接円をかいたものである。\\
\\
(1)太郎さんは、点Pのとり方によって外接円の半径が異なることに気づき、\\
次の問題1を考えることにした。\\
\\
問題1:点Pをいろいろな位置にとるとき、外接円の半径Rが最小となる\\
\triangle ABPはどのような三角形か。\\
正弦定理により、2R=\frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}である。よって、\\
Rが最小となるのは\angle APB=\boxed{\ \ クケ\ \ }°の三角形である。\\
このとき、R=\boxed{\ \ コ\ \ }である。\\
\\
\\
(2)太郎さんは、図2(※動画参照)のように、問題1の点Pのとり方に\\
条件を付けて、次の問題2を考えた。\\
\\
問題2:直線ABに平行な直線をlとし、直線l上で点Pをいろいろな\\
位置にとる。このとき、外接円の半径Rが最小となる\triangle ABPは\\
どのような三角形か。\\
\\
太郎さんは、この問題を解決するために、次の構想を立てた。\\
\\
問題2の解決の構想\\
問題1の考察から、線分ABを直径とする円をCとし、円Cに着目\\
する。直線lは、その位置によって、円Cと共有点を持つ場合と\\
もたない場合があるので、それぞれの場合に分けて考える。\\
\\
直線ABと直線lとの距離をhとする。直線lが円Cと共有点を\\
持つ場合は、h \leqq \boxed{\ \ サ\ \ }のときであり、共有点をもたない場合は、\\
h \gt \boxed{\ \ サ\ \ }のときである。\\
\\
(\textrm{i})h \leqq \boxed{\ \ サ\ \ }のとき\\
直線lが円Cと共有点をもつので、Rが最小となる\triangle ABPは、\\
h \lt \boxed{\ \ サ\ \ }のとき\boxed{\boxed{\ \ シ\ \ }}であり、h=\boxed{\ \ サ\ \ }のとき直角二等辺三角形\\
である。\\
\\
(\textrm{ii})h \gt \boxed{\ \ サ\ \ }のとき\\
線分ABの垂直二等分線をmとし、直線mと直線lとの交点をP_1とする。\\
直線l上にあり点P_1とは異なる点をP_2とするとき\sin\angle AP_1B\\
と\sin\angle AP_2Bの大小を考える。\\
\triangle ABP_2の外接円と直線mとの共有点のうち、直線ABに関して点P_2\\
と同じ側にある点をP_3とすると、\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2Bである。\\
また、\angle AP_3B \lt \angle AP_1B \lt 90°より\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1Bである。\\
このとき(\triangle ABP_1の外接円の半径) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2の外接円の半径)\\
であり、Rが最小となる\triangle ABPは\boxed{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}については、最も適当なものを、次の⓪~④のうち\\
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
⓪鈍角三角形 ①直角三角形 ②正三角形 \\
③二等辺三角形 ④直角二等辺三角形 \\
\\
\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪\lt ①= ②\gt \\
\\
(3)問題2の考察を振り返って、h=8のとき、\triangle ABPの外接円の半径R\\
が最小である場合について考える。このとき、\sin\angle APB=\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\\
であり、R=\boxed{\ \ テ\ \ }である。
\end{eqnarray}
この動画を見る 

【数Ⅰ】数と式:符号ミスをしない、1次不等式のオススメの解法を紹介!!

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
符号ミスをしない、1次不等式のオススメの解法を紹介!!
この動画を見る 

【数Ⅰ】数と式:間違える人続出!やっかいな1次不等式! -2
アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
-2<x<5,-7<y<4のとき,x-yの値の範囲を求めよ。
この動画を見る 

【高校数学】不等式の例題~難しいものも解こうよ~ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) |$x$| + |$x-2$| $\lt x + 1$

(2)次の連立不等式を満たす整数$x$がちょうど3個存在するような定数$a$の値の
  範囲を求めよ。
  $\begin{eqnarray}
\begin{cases}
5x - 2 \gt 3x …①\\
x-a \lt 0 …②
\end{cases}
\end{eqnarray}$

(3) $ax + a \lt a^2 + x$ 解け。ただし、$a$は定数とする。
この動画を見る 

【高校数学】絶対値を含む方程式・不等式~考え方を学ぼう~ 1-14【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値を含む方程式・不等式の説明動画です
この動画を見る 

【高校数学】1次不等式の利用~ただの文章題です~ 1-13 【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)Aさんの通う学校から自宅までの道のりは24kmである。
  この道のりを初めは時速4km,途中から時速3kmで歩いたら、
  所要時間は7時間以内であった。
  時速4kmで歩いた道のりはどれほどか。

(2)連続する3つの整数の和が37以上になるもののうち、
  その和が最小となる3つの数を求めよ。
この動画を見る 

【高校数学】連立不等式~きちんと理解しましょう~ 1-12【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\begin{eqnarray}
\begin{cases}
7x-1 \geqq 4x-7 ) \\
x+4 \gt 3(1+x)
\end{cases}
\end{eqnarray}$

(2)$5x-6\leqq x+1<2x$
この動画を見る 

【高校数学】1次不等式~図も理解しましょう~ 1-11【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1次不等式の解説動画です
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察4(受験編)

アイキャッチ画像
単元: #中1数学#方程式#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ n個の変数の相加・相乗平均の関係を証明せよ。\\
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して\\
\frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd} を既知として、\frac{a+b+c}{3} \geqq \sqrt[3]{abc} を証明せよ。\\
ただし、a,b,c,dは全て正の数であるとする。\\
\\
{\Large\boxed{2}}\ \boxed{1}を利用して、n個の変数の相加・相乗平均の関係を証明せよ。\\
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して\\
\frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}
\end{eqnarray}
この動画を見る 

一橋大学  3次方程式 整数解 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#微分法と積分法#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学過去問題
kは整数$ \ $3次方程式
$x^3-13x+k=0$は3つの異なる整数解をもつ。
kと整数解を求めよ。
この動画を見る 

福田の一夜漬け数学〜絶対値の攻略(2)〜応用編、高校1年生用

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
|x+3|+|x-1|=4x-1\\
\\
|x+3|+|x-1| \leqq 4-x\\
(1)絶対値を場合分けして外して解け。\\
(2)グラフを利用して解け。
\end{eqnarray}
この動画を見る 
PAGE TOP