【数A】【図形の性質】円の位置関係 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【図形の性質】円の位置関係 ※問題文は概要欄

問題文全文(内容文):
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。

図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
チャプター:

0:00 OP
0:26 円と接線の確認
3:17 問題1解説スタート
4:47 (2)解説
6:15 (3)解説
8:51 問題番号2解説スタート
13:46 ED

単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。

図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
投稿日:2025.03.04

<関連動画>

もっちゃんと数学 フェルマーの小定理

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
フェルマーの定理に関して解説していきます.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。

2020慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第4問〜条件付き確率と常用対数の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、
確率$\frac{1}{2}$で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、
必要ならば、$\log_{10}2=0.3010,\ \log_{10}3=0.4771$を用いなさい。
(1)10日目の価格がAよりも高くなるのは、$\boxed{\ \ ア\ \ }$日以上で価格が上昇したとき
である。また、そのような確率は$\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}$である。
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率
は$\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも
1回は価格が下落していた確率は$\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}$である。

2022慶應義塾大学商学部過去問
この動画を見る 

合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$123^{456}を78で割ったあまりを求めよ.$
この動画を見る 

【数学A/整数】約数の個数と総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
180の約数の個数とその総和を求めよ。
この動画を見る 
PAGE TOP