福田の数学〜北里大学2024医学部第1問(3)〜空間ベクトルと四面体の体積 - 質問解決D.B.(データベース)

福田の数学〜北里大学2024医学部第1問(3)〜空間ベクトルと四面体の体積

問題文全文(内容文):
座標空間に4点A(-1, -1, -1), B(2, 0, 1), C(-2, 2, 0), D(1,0,5)がある。このとき、三角形ABCの面積は キ である。平面ABC上に点Hを直線DHが平面 ABCと垂直になるようにとると、点Hの座標は ク である。また、四面体ABCD の体積は ケ である。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間に4点A(-1, -1, -1), B(2, 0, 1), C(-2, 2, 0), D(1,0,5)がある。このとき、三角形ABCの面積は キ である。平面ABC上に点Hを直線DHが平面 ABCと垂直になるようにとると、点Hの座標は ク である。また、四面体ABCD の体積は ケ である。
投稿日:2024.11.12

<関連動画>

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

【数C】空間ベクトル:2直線の交点の位置ベクトル!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、辺ABを1:3に内分する点をL、点OCを3:1に内分する点をM、線分CLを3:2に内分する点をN、線分LMとONの交点をPとし、OA=a、OB=b、OC=cとするとき、OPをa,b,cで表せ。
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
一辺の長さが1である立方体QACB-CFGEを考える。
$\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } $
$= \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },$ とおき、実数s,tに対し
点P,Qを
$\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+$
$s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }$
を満たす点とする。
(1)点Pは直線$\boxed{あ}$上にあり、点Qは直線$\boxed{い}$上にある。
(2)直線$\boxed{あ}$と直線$\boxed{い}$とは$\boxed{う }$

$\boxed{う}$の選択肢
$(\textrm{a})$一致する $(\textrm{b})$平行である $(\textrm{c})$直交する $(\textrm{d})$交わるが直交しない。
$(\textrm{e})$ねじれの位置にあって垂直である $(\textrm{f})$ねじれの位置にあって垂直でない。

(3)線分PQの長さは、$s=\boxed{え},\ t=\boxed{お}$のとき最小値をとり、
このとき$PQ^2=\boxed{か}$である。

$\boxed{え}\ \boxed{お}\ \boxed{か}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}$
$(\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1$
$(\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3$

(4)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQの中点Mの動く領域は
$\boxed{き}$であり、その面積は$\frac{\sqrt{\boxed{オ}}}{\boxed{カ}}$である。

$\boxed{き}$の選択肢
$(\textrm{a})$正三角形 $(\textrm{b})$直角二等辺三角形 $(\textrm{c})$直角二等辺三角形でない直角三角形
$(\textrm{d})$直角二等辺三角形でない直角三角形でもない三角形 $(\textrm{e})$正方形 $(\textrm{f})$正方形でない長方形
$(\textrm{g})$長方形でない平行四辺形 $(\textrm{h})$並行四辺形でない四角形$(\textrm{i})$五角形$(\textrm{i})$六角形
(5)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQが通過する領域の体積は
$\frac{\boxed{キ}}{\boxed{ク}}$である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第2問〜立方体の切断と位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立体図形#立体切断#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 一辺の長さが2である立方体OADB-CFGEを考える。
$\overrightarrow{OA}$=$\overrightarrow{a}$, $\overrightarrow{OB}$=$\overrightarrow{b}$, $\overrightarrow{OC}$=$\overrightarrow{c}$とおく。辺AFの中点をM、辺BDの中点をNとし、3点O,M,Nを通る平面$\pi$で立方体を切断する。
(1)平面$\pi$は辺AF,BD以外に辺$\boxed{\ \ あ\ \ }$とその両端以外で交わる。
(2)平面$\pi$と辺$\boxed{\ \ あ\ \ }$との交点をPとすると$\overrightarrow{OP}$=$\boxed{\ \ い\ \ } \overrightarrow{a}$+$\boxed{\ \ う\ \ } \overrightarrow{b}$+$\boxed{\ \ え\ \ } \overrightarrow{c}$
(3)断面の面積は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\sqrt{\boxed{\ \ ケ\ \ }}$である。
(4)切断されてできる立体のうち、頂点Aを含むものの体積は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。
(5)平面$\pi$と線分CDとの交点をQとする。
(i)点Qは線分CDを$\boxed{\ \ お\ \ }$に内分する。
(ii)$\overrightarrow{OQ}$=$\boxed{\ \ か\ \ } \overrightarrow{a}$+$\boxed{\ \ き\ \ } \overrightarrow{b}$+$\boxed{\ \ く\ \ } \overrightarrow{c}$である。

$\boxed{\ \ い\ \ }~\boxed{\ \ え\ \ }$, $\boxed{\ \ か\ \ }~\boxed{\ \ く\ \ }$の選択肢
(a)0 (b)1 (c)$\frac{1}{2}$ (d)$\frac{1}{3}$ (e)$\frac{2}{3}$ (f)$\frac{1}{4}$ (g)$\frac{3}{4}$ (h)$\frac{1}{5}$ 
(i)$\frac{2}{5}$ (j)$\frac{3}{5}$ (k)$\frac{4}{5}$ (l)$\frac{1}{6}$ (m)$\frac{5}{6}$

$\boxed{\ \ お\ \ }$の選択肢
(a)1:1 (b)2:1 (c)1:2 (d)3:1 (e)1:3 (f)4:1 (g)3:2 
(h)2:3 (i)1:4 (j)5:1 (k)1:5 
この動画を見る 

【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
球面の方程式の解釈と求め方について解説します。
この動画を見る 
PAGE TOP