【数C】【空間ベクトル】a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。 - 質問解決D.B.(データベース)

【数C】【空間ベクトル】a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。

問題文全文(内容文):
a,b,cをベクトルとする。a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。
チャプター:

0:00 オープニング、問題概要
0:18 絶対が出てきた→とりあえず2乗して平方完成
0:50 成分表示されているときの大きさの考え方
3:02 2つの文字が登場する2次式の平方完成
7:20 解答

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cをベクトルとする。a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。
投稿日:2025.10.19

<関連動画>

福田の1.5倍速演習〜合格する重要問題071〜東京医科歯科大学2017年度医学部第2問〜空間における球面と軌跡の問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。

2017東京医科歯科大学医学部過去問
この動画を見る 

【数C】【空間ベクトル】a=(0,1,2)、b=(2,4,6)とする。x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,xをベクトルとする。
a=(0,1,2)、b=(2,4,6)とする。
x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。
この動画を見る 

【数B】空間ベクトル:~正射影ベクトルとそれを使った演習~ A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ。
この動画を見る 

福田の数学〜サッカーボール上のベクトルを求めよう〜慶應義塾大学2023年総合政策学部第5問〜空間の位置ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。

(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.

2023慶應義塾大学総合政策学部過去問
この動画を見る 

【高校数学】 数B-36 2点間の距離①

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点A(x.y.z.)、B($x_2,y_2,z_2$)間の距離は
AB=①_________________

◎次の2点間の距離を求めよう。

②A(2.-1.3)、B(4.3.-1) ③O(0.0.0)、A(4.-2.2)

④3点A(3.1.5)、B(2.4.3)、C(1.2.3)を頂点とする△ABCはどのような三角形?
この動画を見る 
PAGE TOP