20年5月数検準1級1次試験(楕円) - 質問解決D.B.(データベース)

20年5月数検準1級1次試験(楕円)

問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.

20年5月数検準1級1次試験(楕円)過去問
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.

20年5月数検準1級1次試験(楕円)過去問
投稿日:2020.06.09

<関連動画>

【数Ⅱ】円外の点から引いた接線【頻出問題 4S数学問題集で解く】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 点(3,1)を通り,円x^2+y^2=5に接する直線の方程式を求めよ.$
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

【数Ⅱ】図形と方程式:円:円と方程式:円x²+y²=5と直線 2x+1=2の2つの交点を結ぶ線分の長さlを求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【数Ⅱ】図形と方程式:円:円と方程式:円x²+y²=5と直線 2x+1=2の2つの交点を結ぶ線分の長さlを求めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(2)角θに関する方程式\hspace{280pt}\\
\cos 4θ=\cos θ\ \ \ \ \ \ \ (0\leqq θ\leqq \pi)\hspace{30pt}...①\hspace{180pt}\\
について考える。①を満たすθは小さい方から順に\hspace{160pt}\\
θ=0,\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi,\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi\hspace{180pt}\\
の4つである。一方、θが①を満たすとき、t=\cos θとおくとtは\hspace{104pt}\\
\boxed{\ \ ス\ \ }t^4 - \boxed{\ \ セ\ \ }t^2+\boxed{\ \ ソ\ \ }=t\hspace{30pt}...②\hspace{104pt}\\
を満たす。t=1,\cos \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\piは②の解なので、2次方程式\hspace{124pt}\\
\boxed{\ \ タ\ \ }t^2+\boxed{\ \ チ\ \ }t-1=0\hspace{174pt}\\
は\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\piを解にもつ。これより、\hspace{134pt}\\
\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi=\frac{\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }},\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi=-\frac{\sqrt{\boxed{\ \ ツ\ \ }}+\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}であることが分かる。
\end{eqnarray}
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。\\
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。\\
(\textrm{a})\angle BAC \lt \angle ABCを満たす場合、点Cは第\boxed{\ \ ア \ \ }象限に存在する。\\
(\textrm{b})\angle ABC \lt \angle ACBを満たす場合、点Cは\boxed{\ \ イ \ \ }の\boxed{\ \ ウ \ \ }に存在する。\\
(\textrm{c})\angle ACB \lt \frac{\pi}{2}を満たす場合、点Cは\boxed{\ \ エ \ \ }の\boxed{\ \ オ \ \ }に存在する。\\
(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}を満たす点Cが存在する領域(境界を含む)\\
の面積は\frac{\boxed{\ \ カ \ \ }}{\boxed{\ \ キク \ \ }}\pi-\frac{\sqrt{\boxed{\ \ ケ \ \ }}}{\boxed{\ \ コ \ \ }}である。\\
\\
\\
\boxed{\ \ イ \ \ },\boxed{\ \ エ \ \ }の解答群\\
①点Aを中心とし点Bを通る円\\
②点Bを中心とし点Aを通る円\\
③線分ABを直径とする円\\
④離心率が0.5で2点O,Aを焦点とする楕円\\
⑤離心率が0.5で2点O,Bを焦点とする楕円\\
⑥離心率が0.5で2点A,Bを焦点とする楕円\\
⑦線分ABを一辺にもち、重心のy座標が正である正三角形\\
⑧線分ABを一辺にもち、重心のy座標が正である正方形\\
\\
\\
\boxed{\ \ ウ \ \ },\boxed{\ \ オ \ \ }の解答群\\
①内部\ \ \ ②周上\ \ \ ③外部\ \ \ ④重心\\
\\
\\
(2)座標空間内の4点A(-1,0,0),B(1,0,0),C(s,t,0),Dを原点とし、\\
\angle BAC \lt \angle ABC \lt \angle ACB\\
を満たす四面体を考える。t \gt 0であり、点Dのz座標は正であるとする。\\
(\textrm{a})\angle ADC=\frac{\pi}{2}を満たす場合、点Dは\boxed{\ \ サ \ \ }に存在する。\\
(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}を満たす場合、\\
点Dのx座標はsであり、点Dは(s,\boxed{\ \ シ \ \ },0)を中心とする\\
半径\boxed{\ \ ス \ \ }の円周上にある。\\
(\textrm{c})以下ではt=\frac{4}{3}とする。設問(1)の結果から、点Cのx座標sは\\
\boxed{\ \ セ \ \ } \lt s \lt -\boxed{\ \ ソ \ \ }+\frac{\boxed{\ \ タ \ \ }\sqrt{\boxed{\ \ チ \ \ }}}{\boxed{\ \ ツ \ \ }}の範囲をとりうる。この範囲でsが変化\\
するとき、\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}を満たす四面体ABCDの体積は\\
s=\frac{\boxed{\ \ テ \ \ }}{\boxed{\ \ ト \ \ }}のとき最大値\frac{\boxed{\ \ ナ \ \ }}{\boxed{\ \ 二ヌ \ \ }}をとる。
\end{eqnarray}

2022杏林大学医学部過去問
この動画を見る 
PAGE TOP