福田の数学〜慶應義塾大学看護医療学部2025第3問〜空間ベクトルと四面体の体積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学看護医療学部2025第3問〜空間ベクトルと四面体の体積

問題文全文(内容文):

$\boxed{3}$

座標空間内に

$3$点$A(-1,1,6),B(0,3,6),C(1,1,5)$をとる。

このとき、$\vert \overrightarrow{AB} \vert =\boxed{ス},\overrightarrow{AB}・\overrightarrow{AC}=\boxed{セ}$であり、

$\angle BAC$の大きさを$\theta$とすると、

$\sin\theta=\boxed{ソ}$である。

ただし、$0\lt \theta \lt \pi$とする。

また、三角形$ABC$の面積は$\boxed{タ}$である。

さらに、

$3$点$A,B,C$の定める平面$ABC$に原点$O$から

垂線$OH$を下ろすと、点$H$の座標は$\boxed{チ}$であり、

四面体$OABC$の体積は$\boxed{ツ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間内に

$3$点$A(-1,1,6),B(0,3,6),C(1,1,5)$をとる。

このとき、$\vert \overrightarrow{AB} \vert =\boxed{ス},\overrightarrow{AB}・\overrightarrow{AC}=\boxed{セ}$であり、

$\angle BAC$の大きさを$\theta$とすると、

$\sin\theta=\boxed{ソ}$である。

ただし、$0\lt \theta \lt \pi$とする。

また、三角形$ABC$の面積は$\boxed{タ}$である。

さらに、

$3$点$A,B,C$の定める平面$ABC$に原点$O$から

垂線$OH$を下ろすと、点$H$の座標は$\boxed{チ}$であり、

四面体$OABC$の体積は$\boxed{ツ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.05.02

<関連動画>

【数C】【空間ベクトル】四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OPをa、b、cを用いて表せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OA=a、OB=b、OC=cとするとき、OPをa、b、cを用いて表せ
この動画を見る 

【数C】ベクトル:二点を通る直線・空間版

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第3問〜平面へ下ろした垂線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 直方体OABC-DEFGにおける各辺の長さは
OA=CB=DE=GF=1
AB=OC=EF=DG=$\sqrt 2$
OD=AE=BF=CG=$\sqrt 3$
である。点Bから3点O, E, Gを含む平面に下ろした垂線の足をHとする。このとき、$\overrightarrow{\textrm{OH}}$=$\displaystyle\frac{\boxed{ケ}}{\boxed{コ}}\overrightarrow{\textrm{OE}}$+$\displaystyle\frac{\boxed{サ}}{\boxed{シ}}\overrightarrow{\textrm{OG}}$ と表すことができ、$|\overrightarrow{\textrm{BH}}|^2$=$\displaystyle\frac{\boxed{ス}}{\boxed{セ}}$ である。
この動画を見る 

【高校数学】 数B-35 空間の点の座標

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎点P(3.5.4)である右の図のような 直方体OABC-RSPQについて求めよう。

①頂点Bの座標

②頂点、Aの座標

③頂点Rの座標

④頂点Qの座標

⑤SRとPBのなす角

◎点(2.1.3)について、それぞれに関して対称な点の座標を求めよう。

⑥ zx平面

⑦Z軸

⑧原点

※図は動画内参照
この動画を見る 

【数C】【空間ベクトル】平行六面体ABCD-EFGHにおいて、AC=a、AF=AF=b、AH=cとするとき、AGをa,b,cを用いて表せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行六面体 $\mathrm{ABCD}$-$\mathrm{EFGH}$において、
$\overrightarrow{\mathrm{AC}} = \vec{a},\overrightarrow{\mathrm{AF}} = \vec{b}, \overrightarrow{\mathrm{AH}} = \vec{c}$ とするとき、
$\overrightarrow{\mathrm{AG}} $ を $\vec{a}, \vec{b},\vec{c}$ を用いて表せ。
この動画を見る 
PAGE TOP